deepctr.layers.activation module

Weichen Shen,
class deepctr.layers.activation.Dice(axis=-1, epsilon=1e-09, **kwargs)[source]

The Data Adaptive Activation Function in DIN,which can be viewed as a generalization of PReLu and can adaptively adjust the rectified point according to distribution of input data.

Input shape
  • Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.
Output shape
  • Same shape as the input.
  • axis : Integer, the axis that should be used to compute data distribution (typically the features axis).
  • epsilon : Small float added to variance to avoid dividing by zero.
  • [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1059-1068.](

Creates the variables of the layer.

call(inputs, training=None, **kwargs)[source]

This is where the layer’s logic lives.

inputs: Input tensor, or list/tuple of input tensors. **kwargs: Additional keyword arguments.
A tensor or list/tuple of tensors.

Computes the output shape of the layer.

Assumes that the layer will be built to match that input shape provided.

input_shape: Shape tuple (tuple of integers)
or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.
An input shape tuple.

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Python dictionary.