
DeepCTR Documentation
Release 0.9.3

Weichen Shen

Nov 10, 2022

Home:

1 News 3

2 DisscussionGroup 5
2.1 Quick-Start . 6
2.2 Features . 9
2.3 Examples . 40
2.4 FAQ . 51
2.5 History . 54
2.6 DeepCTR Models API . 56
2.7 DeepCTR Estimators API . 85
2.8 DeepCTR Layers API . 96

3 Indices and tables 149

Python Module Index 151

Index 153

i

ii

DeepCTR Documentation, Release 0.9.3

DeepCTR is a Easy-to-use , Modular and Extendible package of deep-learning based CTR models along with lots
of core components layer which can be used to easily build custom models.You can use any complex model with
model.fit() and model.predict().

• Provide tf.keras.Model like interface for quick experiment. example

• Provide tensorflow estimator interface for large scale data and distributed training. example

• It is compatible with both tf 1.x and tf 2.x.

Let’s Get Started! (Chinese Introduction)

You can read the latest code and related projects

• DeepCTR: https://github.com/shenweichen/DeepCTR

• DeepMatch: https://github.com/shenweichen/DeepMatch

• DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch

Home: 1

https://pepy.tech/project/deepctr
https://github.com/shenweichen/DeepCTR
https://github.com/shenweichen/DeepCTR/fork
https://pypi.org/project/deepctr
https://github.com/shenweichen/deepctr/issues
https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr
https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord
./Quick-Start.html
https://zhuanlan.zhihu.com/p/53231955
https://github.com/shenweichen/DeepCTR
https://github.com/shenweichen/DeepMatch
https://github.com/shenweichen/DeepCTR-Torch

DeepCTR Documentation, Release 0.9.3

2 Home:

CHAPTER 1

News

11/10/2022 : Add EDCN . Changelog

10/15/2022 : Support python 3.9 , 3.10 . Changelog

06/11/2022 : Improve compatibility with tensorflow 2.x. Changelog

3

https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.3
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.1

DeepCTR Documentation, Release 0.9.3

4 Chapter 1. News

CHAPTER 2

DisscussionGroup

wechat ID: deepctrbot

Discussions

5

https://github.com/shenweichen/DeepCTR/discussions
https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect

DeepCTR Documentation, Release 0.9.3

2.1 Quick-Start

2.1.1 Installation Guide

Now deepctr is available for python 2.7 and 3.5, 3.6, 3.7.deepctr depends on tensorflow, you can spec-
ify to install the cpu version or gpu version through pip.

CPU version

$ pip install deepctr[cpu]

GPU version

$ pip install deepctr[gpu]

2.1.2 Getting started: 4 steps to DeepCTR

Step 1: Import model

import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import train_test_split
from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, DenseFeat,get_feature_names

data = pd.read_csv('./criteo_sample.txt')

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I'+str(i) for i in range(1, 14)]

data[sparse_features] = data[sparse_features].fillna('-1',)
data[dense_features] = data[dense_features].fillna(0,)
target = ['label']

Step 2: Simple preprocessing

Usually we have two methods to encode the sparse categorical feature for embedding

• Label Encoding: map the features to integer value from 0 ~ len(#unique) - 1

for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

• Hash Encoding: map the features to a fix range,like 0 ~ 9999.We have 2 methods to do that:

– Do feature hashing before training

for feat in sparse_features:
lbe = HashEncoder()
data[feat] = lbe.transform(data[feat])

6 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

– Do feature hashing on the fly in training process

We can do feature hashing by setting use_hash=True in SparseFeat or VarlenSparseFeat in
Step3.

And for dense numerical features,they are usually discretized to buckets,here we use normalization.

mms = MinMaxScaler(feature_range=(0,1))
data[dense_features] = mms.fit_transform(data[dense_features])

Step 3: Generate feature columns

For sparse features, we transform them into dense vectors by embedding techniques. For dense numerical features, we
concatenate them to the input tensors of fully connected layer.

And for varlen(multi-valued) sparse features,you can use VarlenSparseFeat. Visit examples of using
VarlenSparseFeat

• Label Encoding

fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].max() + 1,
→˓embedding_dim=4)

for i,feat in enumerate(sparse_features)] + [DenseFeat(feat, 1,
→˓)

for feat in dense_features]

• Feature Hashing on the fly

fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=1e6,embedding_dim=4, use_
→˓hash=True, dtype='string') # the input is string

for feat in sparse_features] + [DenseFeat(feat, 1,)
for feat in dense_features]

• generate feature columns

dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns

feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

Step 4: Generate the training samples and train the model

train, test = train_test_split(data, test_size=0.2)

train_model_input = {name:train[name].values for name in feature_names}
test_model_input = {name:test[name].values for name in feature_names}

model = DeepFM(linear_feature_columns,dnn_feature_columns,task='binary')
model.compile("adam", "binary_crossentropy",

metrics=['binary_crossentropy'],)

history = model.fit(train_model_input, train[target].values,
batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

pred_ans = model.predict(test_model_input, batch_size=256)

2.1. Quick-Start 7

./Features.html#varlensparsefeat
./Examples.html#multi-value-input-movielens

DeepCTR Documentation, Release 0.9.3

You can check the full code here.

You also can run a distributed training job with the keras model on Kubernetes using ElasticDL.

2.1.3 Getting started: 4 steps to DeepCTR Estimator with TFRecord

Step 1: Import model

import tensorflow as tf

from tensorflow.python.ops.parsing_ops import FixedLenFeature
from deepctr.estimator.inputs import input_fn_tfrecord
from deepctr.estimator.models import DeepFMEstimator

Step 2: Generate feature columns for linear part and dnn part

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]

dnn_feature_columns = []
linear_feature_columns = []

for i, feat in enumerate(sparse_features):
dnn_feature_columns.append(tf.feature_column.embedding_column(

tf.feature_column.categorical_column_with_identity(feat, 1000), 4))
linear_feature_columns.append(tf.feature_column.categorical_column_with_

→˓identity(feat, 1000))
for feat in dense_features:

dnn_feature_columns.append(tf.feature_column.numeric_column(feat))
linear_feature_columns.append(tf.feature_column.numeric_column(feat))

Step 3: Generate the training samples with TFRecord format

feature_description = {k: FixedLenFeature(dtype=tf.int64, shape=1) for k in sparse_
→˓features}
feature_description.update(

{k: FixedLenFeature(dtype=tf.float32, shape=1) for k in dense_features})
feature_description['label'] = FixedLenFeature(dtype=tf.float32, shape=1)

train_model_input = input_fn_tfrecord('./criteo_sample.tr.tfrecords', feature_
→˓description, 'label', batch_size=256,

num_epochs=1, shuffle_factor=10)
test_model_input = input_fn_tfrecord('./criteo_sample.te.tfrecords', feature_
→˓description, 'label',

batch_size=2 ** 14, num_epochs=1, shuffle_
→˓factor=0)

Step 4: Train and evaluate the model

8 Chapter 2. DisscussionGroup

./Examples.html#classification-criteo
https://github.com/sql-machine-learning/elasticdl/blob/develop/docs/tutorials/elasticdl_deepctr_keras.md

DeepCTR Documentation, Release 0.9.3

model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, task='binary')

model.train(train_model_input)
eval_result = model.evaluate(test_model_input)

print(eval_result)

You can check the full code here.

You also can run a distributed training job with the estimator model on Kubernetes using ElasticDL.

2.2 Features

2.2.1 Overview

With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task.

DNN based CTR prediction models usually have following 4 modules: Input,Embedding,
Low-order&High-order Feature Extractor,Prediction

• Input&Embedding

The data in CTR estimation task usually includes high sparse,high cardinality categorical features and
some dense numerical features.

Since DNN are good at handling dense numerical features,we usually map the sparse categorical features
to dense numerical through embedding technique.

For numerical features,we usually apply discretization or normalization on them.

• Feature Extractor

Low-order Extractor learns feature interaction through product between vectors.Factorization-Machine
and it’s variants are widely used to learn the low-order feature interaction.

High-order Extractor learns feature combination through complex neural network functions like
MLP,Cross Net,etc.

2.2.2 Feature Columns

SparseFeat

SparseFeat is a namedtuple with signature SparseFeat(name, vocabulary_size,
embedding_dim, use_hash, vocabulary_path, dtype, embeddings_initializer,
embedding_name, group_name, trainable)

• name : feature name

• vocabulary_size : number of unique feature values for sparse feature or hashing space when use_hash=True

• embedding_dim : embedding dimension

• use_hash : default False.If True the input will be hashed to space of size vocabulary_size.

• vocabulary_path : default None. The CSV text file path of the vocabulary table used by tf.lookup.
TextFileInitializer, which assigns one entry in the table for each line in the file. One entry contains
two columns separated by comma, the first is the value column, the second is the key column. The 0 value is
reserved to use if a key is missing in the table, so hash value need start from 1.

2.2. Features 9

./Examples.html#estimator-with-tfrecord-classification-criteo
https://github.com/sql-machine-learning/elasticdl/blob/develop/docs/tutorials/elasticdl_deepctr_estimator.md

DeepCTR Documentation, Release 0.9.3

• dtype : default int32.dtype of input tensor.

• embeddings_initializer : initializer for the embeddings matrix.

• embedding_name : default None. If None, the embedding_name will be same as name.

• group_name : feature group of this feature.

• trainable: default True.Whether or not the embedding is trainable.

DenseFeat

DenseFeat is a namedtuple with signature DenseFeat(name, dimension, dtype, transform_fn)

• name : feature name

• dimension : dimension of dense feature vector.

• dtype : default float32.dtype of input tensor.

• transform_fn : If not None , a function that can be used to transform values of the feature. the function takes
the input Tensor as its argument, and returns the output Tensor. (e.g. lambda x: (x - 3.0) / 4.2).

VarLenSparseFeat

VarLenSparseFeat is a namedtuple with signature VarLenSparseFeat(sparsefeat, maxlen,
combiner, length_name, weight_name,weight_norm)

• sparsefeat : a instance of SparseFeat

• maxlen : maximum length of this feature for all samples

• combiner : pooling method,can be sum,mean or max

• length_name : feature length name,if None, value 0 in feature is for padding.

• weight_name : default None. If not None, the sequence feature will be multiplyed by the feature whose name
is weight_name.

• weight_norm : default True. Whether normalize the weight score or not.

2.2.3 Models

CCPM (Convolutional Click Prediction Model)

CCPM can extract local-global key features from an input instance with varied elements, which can be implemented
for not only single ad impression but also sequential ad impression.

CCPM Model API CCPM Estimator API

10 Chapter 2. DisscussionGroup

./deepctr.models.ccpm.html
./deepctr.estimator.models.ccpm.html

DeepCTR Documentation, Release 0.9.3

Liu Q, Yu F, Wu S, et al. A convolutional click prediction model[C]//Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM, 2015: 1743-1746.

FNN (Factorization-supported Neural Network)

According to the paper,FNN learn embedding vectors of categorical data via pre-trained FM. It use FM’s latent vector
to initialiaze the embedding vectors.During the training stage,it concatenates the embedding vectors and feeds them
into a MLP(MultiLayer Perceptron).

FNN Model API FNN Estimator API

2.2. Features 11

http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
./deepctr.models.fnn.html
./deepctr.estimator.models.fnn.html

DeepCTR Documentation, Release 0.9.3

Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]//European conference on information
retrieval. Springer, Cham, 2016: 45-57.

PNN (Product-based Neural Network)

PNN concatenates sparse feature embeddings and the product between embedding vectors as the input of MLP.

PNN Model API PNN Estimator API

12 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1601.02376.pdf
https://arxiv.org/pdf/1601.02376.pdf
./deepctr.models.pnn.html
./deepctr.estimator.models.pnn.html

DeepCTR Documentation, Release 0.9.3

Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//Data Mining (ICDM), 2016
IEEE 16th International Conference on. IEEE, 2016: 1149-1154.

Wide & Deep

WDL’s deep part concatenates sparse feature embeddings as the input of MLP,the wide part use handcrafted feature as
input. The logits of deep part and wide part are added to get the prediction probability.

WDL Model API WDL Estimator API

2.2. Features 13

https://arxiv.org/pdf/1611.00144.pdf
https://arxiv.org/pdf/1611.00144.pdf
./deepctr.models.wdl.html
./deepctr.estimator.models.wdl.html

DeepCTR Documentation, Release 0.9.3

Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.

DeepFM

DeepFM can be seen as an improvement of WDL and FNN.Compared with WDL,DeepFM use FM instead of LR
in the wide part and use concatenation of embedding vectors as the input of MLP in the deep part. Compared with
FNN,the embedding vector of FM and input to MLP are same. And they do not need a FM pretrained vector to
initialiaze,they are learned end2end.

DeepFM Model API DeepFM Estimator API

14 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1606.07792.pdf
https://arxiv.org/pdf/1606.07792.pdf
./deepctr.models.deepfm.html
./deepctr.estimator.models.deepfm.html

DeepCTR Documentation, Release 0.9.3

Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr prediction[J]. arXiv preprint
arXiv:1703.04247, 2017.

MLR(Mixed Logistic Regression/Piece-wise Linear Model)

MLR can be viewed as a combination of $2m$ LR model, m is the piece(region) number. m LR model learns
the weight that the sample belong to each region,another m LR model learn sample’s click probability in the region.
Finally,the sample’s CTR is a weighted sum of each region’s click probability.Notice the weight is normalized weight.

MLR Model API

2.2. Features 15

http://www.ijcai.org/proceedings/2017/0239.pdf
http://www.ijcai.org/proceedings/2017/0239.pdf
./deepctr.models.mlr.html

DeepCTR Documentation, Release 0.9.3

Gai K, Zhu X, Li H, et al. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction[J].
arXiv preprint arXiv:1704.05194, 2017.

NFM (Neural Factorization Machine)

NFM use a bi-interaction pooling layer to learn feature interaction between embedding vectors and compress the result
into a singe vector which has the same size as a single embedding vector. And then fed it into a MLP.The output logit
of MLP and the output logit of linear part are added to get the prediction probability.

NFM Model API NFM Estimator API

16 Chapter 2. DisscussionGroup

http://arxiv.org/abs/1704.05194
http://arxiv.org/abs/1704.05194
./deepctr.models.nfm.html
./deepctr.estimator.models.nfm.html

DeepCTR Documentation, Release 0.9.3

He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.

AFM (Attentional Factorization Machine)

AFM is a variant of FM,tradional FM sums the inner product of embedding vector uniformly. AFM can be seen as
weighted sum of feature interactions.The weight is learned by a small MLP.

AFM Model API AFM Estimator API

2.2. Features 17

https://arxiv.org/pdf/1708.05027.pdf
https://arxiv.org/pdf/1708.05027.pdf
./deepctr.models.afm.html
./deepctr.estimator.models.afm.html

DeepCTR Documentation, Release 0.9.3

Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention
networks[J]. arXiv preprint arXiv:1708.04617, 2017.

DCN (Deep & Cross Network)

DCN use a Cross Net to learn both low and high order feature interaction explicitly,and use a MLP to learn feature
interaction implicitly. The output of Cross Net and MLP are concatenated.The concatenated vector are feed into one
fully connected layer to get the prediction probability.

DCN Model API DCN Estimator API

18 Chapter 2. DisscussionGroup

http://www.ijcai.org/proceedings/2017/435
http://www.ijcai.org/proceedings/2017/435
./deepctr.models.dcn.html
./deepctr.estimator.models.dcn.html

DeepCTR Documentation, Release 0.9.3

Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17. ACM,
2017: 12.

DCN-Mix (Improved Deep & Cross Network with mix of experts and matrix kernel)

DCN-Mix uses a matrix kernel instead of vector kernel in CrossNet compared with DCN,and it uses mixture of experts
to learn feature interactions.

DCN-Mix Model API

2.2. Features 19

https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/1708.05123
./deepctr.models.dcnmix.html

DeepCTR Documentation, Release 0.9.3

Wang R, Shivanna R, Cheng D Z, et al. DCN V2: Improved Deep & Cross Network and Practical Lessons for
Web-scale Learning to Rank Systems[J]. arXiv preprint arXiv:2008.13535, 2020.

xDeepFM

xDeepFM use a Compressed Interaction Network (CIN) to learn both low and high order feature interaction explic-
itly,and use a MLP to learn feature interaction implicitly. In each layer of CIN,first compute outer products between
x^k and x_0 to get a tensor Z_{k+1},then use a 1DConv to learn feature maps H_{k+1} on this tensor.
Finally,apply sum pooling on all the feature maps H_k to get one vector.The vector is used to compute the logit that
CIN contributes.

xDeepFM Model API xDeepFM Estimator API

20 Chapter 2. DisscussionGroup

https://arxiv.org/abs/2008.13535
https://arxiv.org/abs/2008.13535
./deepctr.models.xdeepfm.html
./deepctr.estimator.models.xdeepfn.html

DeepCTR Documentation, Release 0.9.3

Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender
Systems[J]. arXiv preprint arXiv:1803.05170, 2018.

AutoInt(Automatic Feature Interaction)

AutoInt use a interacting layer to model the interactions between different features. Within each interacting layer,
each feature is allowed to interact with all the other features and is able to automatically identify relevant features
to form meaningful higher-order features via the multi-head attention mechanism. By stacking multiple interacting
layers,AutoInt is able to model different orders of feature interactions.

AutoInt Model API AutoInt Estimator API

2.2. Features 21

https://arxiv.org/pdf/1803.05170.pdf
https://arxiv.org/pdf/1803.05170.pdf
./deepctr.models.autoint.html
./deepctr.estimator.models.autoint.html

DeepCTR Documentation, Release 0.9.3

22 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature interaction learning via self-attentive neural net-
works[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:
1161-1170.

ONN(Operation-aware Neural Networks for User Response Prediction)

ONN models second order feature interactions like like FFM and preserves second-order interaction information as
much as possible.Further more,deep neural network is used to learn higher-ordered feature interactions.

ONN Model API

2.2. Features 23

https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/1810.11921
./deepctr.models.onn.html

DeepCTR Documentation, Release 0.9.3

Yang Y, Xu B, Shen F, et al. Operation-aware Neural Networks for User Response Prediction[J]. arXiv preprint
arXiv:1904.12579, 2019.

FGCNN(Feature Generation by Convolutional Neural Network)

FGCNN models with two components: Feature Generation and Deep Classifier. Feature Generation leverages the
strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the
structure of IPNN to learn interactions from the augmented feature space.

FGCNN Model API

24 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1904.12579.pdf
https://arxiv.org/pdf/1904.12579.pdf
./deepctr.models.fgcnn.html

DeepCTR Documentation, Release 0.9.3

Liu B, Tang R, Chen Y, et al. Feature Generation by Convolutional Neural Network for Click-Through Rate Predic-
tion[J]. arXiv preprint arXiv:1904.04447, 2019.

FiBiNET(Feature Importance and Bilinear feature Interaction NETwork)

Feature Importance and Bilinear feature Interaction NETwork is proposed to dynamically learn the feature importance
and fine-grained feature interactions. On the one hand, the FiBiNET can dynamically learn the importance of fea-
tures via the Squeeze-Excitation network (SENET) mechanism; on the other hand, it is able to effectively learn the
feature interactions via bilinear function.

FiBiNET Model API FiBiNET Estimator API

2.2. Features 25

https://arxiv.org/pdf/1904.04447
https://arxiv.org/pdf/1904.04447
./deepctr.models.fibinet.html
./deepctr.estimator.models.fibinet.html

DeepCTR Documentation, Release 0.9.3

Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-
Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.

FLEN(Field-Leveraged Embedding Network)

A large-scale CTR prediction model with efficient usage of field information to alleviate gradient coupling problem.

FLEN Model API

FLEN example

26 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1905.09433.pdf
https://arxiv.org/pdf/1905.09433.pdf
./deepctr.models.flen.html
https://github.com/shenweichen/DeepCTR/tree/master/examples/run_flen.py

DeepCTR Documentation, Release 0.9.3

Chen W, Zhan L, Ci Y, Lin C. FLEN: Leveraging Field for Scalable CTR Prediction[J]. arXiv preprint
arXiv:1911.04690, 2019.

IFM(Input-aware Factorization Machine)

IFM improves FMs by explicitly considering the impact of each individual input upon the representation of features,
which learns a unique input-aware factor for the same feature in different instances via a neural network.

IFM Model API

2.2. Features 27

https://arxiv.org/pdf/1911.04690.pdf
https://arxiv.org/pdf/1911.04690.pdf
./deepctr.models.ifm.html

DeepCTR Documentation, Release 0.9.3

Yu Y, Wang Z, Yuan B. An Input-aware Factorization Machine for Sparse Prediction[C]//IJCAI. 2019: 1466-1472.

DIFM(Dual Input-aware Factorization Machine)

Dual Input-aware Factorization Machines (DIFMs) can adaptively reweight the original feature representations at the
bit-wise and vector-wise levels simultaneously. DIFM Model API

28 Chapter 2. DisscussionGroup

https://www.ijcai.org/Proceedings/2019/0203.pdf
./deepctr.models.difm.html

DeepCTR Documentation, Release 0.9.3

Lu W, Yu Y, Chang Y, et al. A Dual Input-aware Factorization Machine for CTR Prediction[C]//IJCAI. 2020: 3139-
3145.

DeepFEFM(Deep Field-Embedded Factorization Machine)

FEFM learns symmetric matrix embeddings for each field pair along with the usual single vector embeddings for
each feature. FEFM has significantly lower model complexity than FFM and roughly the same complexity as FwFM.
DeepFEFM Model API

2.2. Features 29

https://www.ijcai.org/Proceedings/2020/0434.pdf
https://www.ijcai.org/Proceedings/2020/0434.pdf
./deepctr.models.deepfefm.html

DeepCTR Documentation, Release 0.9.3

Pande H. Field-Embedded Factorization Machines for Click-through rate prediction[J]. arXiv preprint
arXiv:2009.09931, 2020.

EDCN(Enhancing Explicit and Implicit Feature Interactions DCN)

EDCN introduces two advanced modules, namelybridge moduleandregulation module, which work collaboratively
tocapture the layer-wise interactive signals and learn discriminativefeature distributions for each hidden layer of the
parallel networks.

EDCN Model API

30 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/2009.09931
https://arxiv.org/pdf/2009.09931
./deepctr.models.edcn.html

DeepCTR Documentation, Release 0.9.3

Chen B, Wang Y, Liu Z, et al. Enhancing explicit and implicit feature interactions via information sharing for parallel
deep ctr models[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Manage-
ment. 2021: 3757-3766.

2.2.4 Sequence Models

DIN (Deep Interest Network)

DIN introduce a attention method to learn from sequence(multi-valued) feature. Tradional method usually use
sum/mean pooling on sequence feature. DIN use a local activation unit to get the activation score between candi-
date item and history items. User’s interest are represented by weighted sum of user behaviors. user’s interest vector
and other embedding vectors are concatenated and fed into a MLP to get the prediction.

DIN Model API

2.2. Features 31

https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf
https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf
https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf
./deepctr.models.sequence.din.html

DeepCTR Documentation, Release 0.9.3

DIN example

Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1059-1068.

DIEN (Deep Interest Evolution Network)

Deep Interest Evolution Network (DIEN) uses interest extractor layer to capture temporal interests from history behav-
ior sequence. At this layer, an auxiliary loss is proposed to supervise interest extracting at each step. As user interests
are diverse, especially in the e-commerce system, interest evolving layer is proposed to capture interest evolving pro-
cess that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential
structure novelly, and the effects of relative interests are strengthened during interest evolution.

DIEN Model API

DIEN example

32 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/tree/master/examples/run_din.py
https://arxiv.org/pdf/1706.06978.pdf
https://arxiv.org/pdf/1706.06978.pdf
./deepctr.models.sequence.dien.html
https://github.com/shenweichen/DeepCTR/tree/master/examples/run_dien.py

DeepCTR Documentation, Release 0.9.3

Zhou G, Mou N, Fan Y, et al. Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint
arXiv:1809.03672, 2018.

DSIN(Deep Session Interest Network)

Deep Session Interest Network (DSIN) extracts users’ multiple historical sessions in their behavior sequences. First it
uses self-attention mechanism with bias encoding to extract users’ interests in each session. Then apply Bi-LSTM to
model how users’ interests evolve and interact among sessions. Finally, local activation unit is used to adaptively learn
the influences of various session interests on the target item.

DSIN Model API

DSIN example

2.2. Features 33

https://arxiv.org/pdf/1809.03672.pdf
https://arxiv.org/pdf/1809.03672.pdf
./deepctr.models.sequence.dsin.html
https://github.com/shenweichen/DeepCTR/tree/master/examples/run_dsin.py

DeepCTR Documentation, Release 0.9.3

Feng Y, Lv F, Shen W, et al. Deep Session Interest Network for Click-Through Rate Prediction[J]. arXiv preprint
arXiv:1905.06482, 2019.

BST(Behavior Sequence Transformer)

BST use the powerful Transformer model to capture the sequential signals underlying users’ behavior sequences .

BST Model API

BST example

34 Chapter 2. DisscussionGroup

https://arxiv.org/abs/1905.06482
https://arxiv.org/abs/1905.06482
./deepctr.models.sequence.bst.html
https://github.com/shenweichen/DeepCTR/tree/master/examples/run_din.py

DeepCTR Documentation, Release 0.9.3

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for e-commerce
recommendation in Alibaba. In Proceedings of the 1st International Workshop on Deep Learning Practice for High-
Dimensional Sparse Data (DLP-KDD ‘19). Association for Computing Machinery, New York, NY, USA, Article 12,
1–4. DOI:)

2.2.5 MultiTask Models

SharedBottom

Hard parameter sharing is the most commonly used approach to MTL in neural networks. It is generally applied by
sharing the hidden layers between all tasks, while keeping several task-specific output layers.

SharedBottom Model API

2.2. Features 35

https://arxiv.org/pdf/1905.06874.pdf
https://arxiv.org/pdf/1905.06874.pdf
https://arxiv.org/pdf/1905.06874.pdf
https://arxiv.org/pdf/1905.06874.pdf
./deepctr.models.multitask.sharedbottom.html

DeepCTR Documentation, Release 0.9.3

Ruder S. An overview of multi-task learning in deep neural networks[J]. arXiv preprint arXiv:1706.05098, 2017.

ESMM(Entire Space Multi-task Model)

ESMM models CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impres-
sion → click → conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems
simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer
learning strategy.

ESMM Model API

36 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1706.05098.pdf
./deepctr.models.multitask.esmm.html

DeepCTR Documentation, Release 0.9.3

Ma X, Zhao L, Huang G, et al. Entire space multi-task model: An effective approach for estimating post-click conver-
sion rate[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.
2018.

MMOE(Multi-gate Mixture-of-Experts)

Multi-gate Mixture-of-Experts (MMoE) explicitly learns to model task relationships from data. We adapt the Mixture-
of- Experts (MoE) structure to multi-task learning by sharing the expert submodels across all tasks, while also having
a gating network trained to optimize each task.

MMOE Model API

2.2. Features 37

https://arxiv.org/abs/1804.07931
https://arxiv.org/abs/1804.07931
https://arxiv.org/abs/1804.07931
./deepctr.models.multitask.mmoe.html

DeepCTR Documentation, Release 0.9.3

Ma J, Zhao Z, Yi X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing. 2018.

PLE(Progressive Layered Extraction)

PLE separates shared components and task-specific components explicitly and adopts a progressive rout- ing mecha-
nism to extract and separate deeper semantic knowledge gradually, improving efficiency of joint representation learn-
ing and information routing across tasks in a general setup.

PLE Model API

38 Chapter 2. DisscussionGroup

https://dl.acm.org/doi/abs/10.1145/3219819.3220007
https://dl.acm.org/doi/abs/10.1145/3219819.3220007
https://dl.acm.org/doi/abs/10.1145/3219819.3220007
./deepctr.models.multitask.ple.html

DeepCTR Documentation, Release 0.9.3

Tang H, Liu J, Zhao M, et al. Progressive layered extraction (ple): A novel multi-task learning (mtl) model for
personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems. 2020.

2.2.6 Layers

The models of deepctr are modular, so you can use different modules to build your own models.

The module is a class that inherits from tf.keras.layers.Layer,it has the same attributes and methods as keras
Layers like tf.keras.layers.Dense() etc

You can see layers API in Layers

2.2. Features 39

https://dl.acm.org/doi/10.1145/3383313.3412236
https://dl.acm.org/doi/10.1145/3383313.3412236
./Layers.html

DeepCTR Documentation, Release 0.9.3

2.3 Examples

2.3.1 Classification: Criteo

The Criteo Display Ads dataset is for the purpose of predicting ads click-through rate. It has 13 integer features and
26 categorical features where each category has a high cardinality.

In this example,we simply normailize the dense feature between 0 and 1,you can try other transformation technique
like log normalization or discretization.Then we use SparseFeat and DenseFeat to generate feature columns for sparse
features and dense features.

This example shows how to use DeepFM to solve a simple binary classification task. You can get the demo data
criteo_sample.txt and run the following codes.

import pandas as pd
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.models import *
from deepctr.feature_column import SparseFeat, DenseFeat, get_feature_names

if __name__ == "__main__":
data = pd.read_csv('./criteo_sample.txt')

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]

data[sparse_features] = data[sparse_features].fillna('-1',)
data[dense_features] = data[dense_features].fillna(0,)
target = ['label']

1.Label Encoding for sparse features,and do simple Transformation for dense
→˓features

for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

2.count #unique features for each sparse field,and record dense feature field
→˓name

fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].max() + 1,
→˓embedding_dim=4)

for i, feat in enumerate(sparse_features)] +
→˓[DenseFeat(feat, 1,)

for feat
→˓in dense_features]

(continues on next page)

40 Chapter 2. DisscussionGroup

./Features.html#sparsefeat
./Features.html#densefeat
https://github.com/shenweichen/DeepCTR/tree/master/examples/criteo_sample.txt

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns

feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model

train, test = train_test_split(data, test_size=0.2, random_state=2020)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary')
model.compile("adam", "binary_crossentropy",

metrics=['binary_crossentropy'],)

history = model.fit(train_model_input, train[target].values,
batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

pred_ans = model.predict(test_model_input, batch_size=256)
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))

2.3.2 Classification: Criteo with feature hashing on the fly

This example shows how to use DeepFM to solve a simple binary classification task using feature hashing. You can
get the demo data criteo_sample.txt and run the following codes.

import pandas as pd
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, DenseFeat, get_feature_names

if __name__ == "__main__":
data = pd.read_csv('./criteo_sample.txt')

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]

data[sparse_features] = data[sparse_features].fillna('-1',)
data[dense_features] = data[dense_features].fillna(0,)
target = ['label']

1.do simple Transformation for dense features
mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

2.set hashing space for each sparse field,and record dense feature field name

fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=1000, embedding_dim=4,
→˓use_hash=True, dtype='string')

since the input is string

(continues on next page)

2.3. Examples 41

https://github.com/shenweichen/DeepCTR/tree/master/examples/criteo_sample.txt

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

for feat in sparse_features] + [DenseFeat(feat, 1,)
for feat in dense_

→˓features]

linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns,)

3.generate input data for model

train, test = train_test_split(data, test_size=0.2, random_state=2020)

train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary')
model.compile("adam", "binary_crossentropy",

metrics=['binary_crossentropy'],)

history = model.fit(train_model_input, train[target].values,
batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

pred_ans = model.predict(test_model_input, batch_size=256)
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))

2.3.3 Regression: Movielens

The MovieLens data has been used for personalized tag recommendation,which contains 668, 953 tag applications of
users on movies. Here is a small fraction of data include only sparse field.

This example shows how to use DeepFM to solve a simple binary regression task. You can get the demo data movie-
lens_sample.txt and run the following codes.

import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, get_feature_names

if __name__ == "__main__":

(continues on next page)

42 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/tree/master/examples/movielens_sample.txt
https://github.com/shenweichen/DeepCTR/tree/master/examples/movielens_sample.txt

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",

"gender", "age", "occupation", "zip"]
target = ['rating']

1.Label Encoding for sparse features,and do simple Transformation for dense
→˓features

for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

2.count #unique features for each sparse field
fixlen_feature_columns = [SparseFeat(feat, data[feat].max() + 1, embedding_dim=4)

for feat in sparse_features]
linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model
train, test = train_test_split(data, test_size=0.2, random_state=2020)
train_model_input = {name: train[name].values for name in feature_names}
test_model_input = {name: test[name].values for name in feature_names}

4.Define Model,train,predict and evaluate
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression')
model.compile("adam", "mse", metrics=['mse'],)

history = model.fit(train_model_input, train[target].values,
batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

pred_ans = model.predict(test_model_input, batch_size=256)
print("test MSE", round(mean_squared_error(

test[target].values, pred_ans), 4))

2.3.4 Multi-value Input : Movielens

The MovieLens data has been used for personalized tag recommendation,which contains 668, 953 tag applications of
users on movies. Here is a small fraction of data include sparse fields and a multivalent field.

There are 2 additional steps to use DeepCTR with sequence feature input.

1. Generate the paded and encoded sequence feature of sequence input feature(value 0 is for padding).

2.3. Examples 43

DeepCTR Documentation, Release 0.9.3

2. Generate config of sequence feature with VarLenSparseFeat

This example shows how to use DeepFM with sequence(multi-value) feature. You can get the demo data movie-
lens_sample.txt and run the following codes.

import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.keras.preprocessing.sequence import pad_sequences

from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, VarLenSparseFeat, get_feature_names

def split(x):
key_ans = x.split('|')
for key in key_ans:

if key not in key2index:
Notice : input value 0 is a special "padding",so we do not use 0 to

→˓encode valid feature for sequence input
key2index[key] = len(key2index) + 1

return list(map(lambda x: key2index[x], key_ans))

if __name__ == "__main__":
data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",

"gender", "age", "occupation", "zip",]
target = ['rating']

1.Label Encoding for sparse features,and process sequence features
for feat in sparse_features:

lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

preprocess the sequence feature

key2index = {}
genres_list = list(map(split, data['genres'].values))
genres_length = np.array(list(map(len, genres_list)))
max_len = max(genres_length)
Notice : padding=`post`
genres_list = pad_sequences(genres_list, maxlen=max_len, padding='post',)

2.count #unique features for each sparse field and generate feature config for
→˓sequence feature

fixlen_feature_columns = [SparseFeat(feat, data[feat].max() + 1, embedding_dim=4)
for feat in sparse_features]

use_weighted_sequence = False
if use_weighted_sequence:

varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_
→˓size=len(

key2index) + 1, embedding_dim=4), maxlen=max_len, combiner='mean',
weight_name='genres_weight')] #

→˓Notice : value 0 is for padding for sequence input feature
else:

varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_
→˓size=len(

(continues on next page)

44 Chapter 2. DisscussionGroup

./Features.html#varlensparsefeat
https://github.com/shenweichen/DeepCTR/tree/master/examples/movielens_sample.txt
https://github.com/shenweichen/DeepCTR/tree/master/examples/movielens_sample.txt

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

key2index) + 1, embedding_dim=4), maxlen=max_len, combiner='mean',
weight_name=None)] # Notice :

→˓value 0 is for padding for sequence input feature

linear_feature_columns = fixlen_feature_columns + varlen_feature_columns
dnn_feature_columns = fixlen_feature_columns + varlen_feature_columns

feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model
model_input = {name: data[name] for name in feature_names} #
model_input["genres"] = genres_list
model_input["genres_weight"] = np.random.randn(data.shape[0], max_len, 1)

4.Define Model,compile and train
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression')

model.compile("adam", "mse", metrics=['mse'],)
history = model.fit(model_input, data[target].values,

batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

2.3.5 Multi-value Input : Movielens with feature hashing on the fly

import numpy as np
import pandas as pd
from tensorflow.python.keras.preprocessing.sequence import pad_sequences

from deepctr.feature_column import SparseFeat, VarLenSparseFeat, get_feature_names
from deepctr.models import DeepFM

if __name__ == "__main__":
data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",

"gender", "age", "occupation", "zip",]

data[sparse_features] = data[sparse_features].astype(str)
target = ['rating']

1.Use hashing encoding on the fly for sparse features,and process sequence
→˓features

genres_list = list(map(lambda x: x.split('|'), data['genres'].values))
genres_length = np.array(list(map(len, genres_list)))
max_len = max(genres_length)

Notice : padding=`post`
genres_list = pad_sequences(genres_list, maxlen=max_len, padding='post',

→˓dtype=object, value=0).astype(str)

2.set hashing space for each sparse field and generate feature config for
→˓sequence feature

fixlen_feature_columns = [SparseFeat(feat, data[feat].nunique() * 5, embedding_
→˓dim=4, use_hash=True, dtype='string')

for feat in sparse_features]
(continues on next page)

2.3. Examples 45

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

varlen_feature_columns = [
VarLenSparseFeat(SparseFeat('genres', vocabulary_size=100, embedding_dim=4,

→˓use_hash=True, dtype="string"),
maxlen=max_len, combiner='mean',
)] # Notice : value 0 is for padding for sequence input

→˓feature
linear_feature_columns = fixlen_feature_columns + varlen_feature_columns
dnn_feature_columns = fixlen_feature_columns + varlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model
model_input = {name: data[name] for name in feature_names}
model_input['genres'] = genres_list

4.Define Model,compile and train
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression')

model.compile("adam", "mse", metrics=['mse'],)
history = model.fit(model_input, data[target].values,

batch_size=256, epochs=10, verbose=2, validation_split=0.2,)

2.3.6 Hash Layer with pre-defined key-value vocabulary

This examples how to use pre-defined key-value vocabulary in Hash Layer.movielens_age_vocabulary.csv
stores the key-value mapping for age feature.

from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, VarLenSparseFeat, get_feature_names
import numpy as np
import pandas as pd
from tensorflow.python.keras.preprocessing.sequence import pad_sequences

try:
import tensorflow.compat.v1 as tf

except ImportError as e:
import tensorflow as tf

if __name__ == "__main__":
data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",

"gender", "age", "occupation", "zip",]

data[sparse_features] = data[sparse_features].astype(str)
target = ['rating']

1.Use hashing encoding on the fly for sparse features,and process sequence
→˓features

genres_list = list(map(lambda x: x.split('|'), data['genres'].values))
genres_length = np.array(list(map(len, genres_list)))
max_len = max(genres_length)

Notice : padding=`post`
genres_list = pad_sequences(genres_list, maxlen=max_len, padding='post',

→˓dtype=object, value=0).astype(str)

(continues on next page)

46 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

2.set hashing space for each sparse field and generate feature config for
→˓sequence feature

fixlen_feature_columns = [SparseFeat(feat, data[feat].nunique() * 5, embedding_
→˓dim=4, use_hash=True,

vocabulary_path='./movielens_age_vocabulary.
→˓csv' if feat == 'age' else None,

dtype='string')
for feat in sparse_features]

varlen_feature_columns = [
VarLenSparseFeat(SparseFeat('genres', vocabulary_size=100, embedding_dim=4,

use_hash=True, dtype="string"),
maxlen=max_len, combiner='mean',
)] # Notice : value 0 is for padding for sequence input

→˓feature
linear_feature_columns = fixlen_feature_columns + varlen_feature_columns
dnn_feature_columns = fixlen_feature_columns + varlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model
model_input = {name: data[name] for name in feature_names}
model_input['genres'] = genres_list

4.Define Model,compile and train
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression')
model.compile("adam", "mse", metrics=['mse'],)
if not hasattr(tf, 'version') or tf.version.VERSION < '2.0.0':

with tf.Session() as sess:
sess.run(tf.tables_initializer())
history = model.fit(model_input, data[target].values,

batch_size=256, epochs=10, verbose=2, validation_
→˓split=0.2,)

else:
history = model.fit(model_input, data[target].values,

batch_size=256, epochs=10, verbose=2, validation_split=0.
→˓2,)

2.3.7 Estimator with TFRecord: Classification Criteo

This example shows how to use DeepFMEstimator to solve a simple binary classification task. You can get the
demo data criteo_sample.tr.tfrecords and criteo_sample.te.tfrecords and run the following codes.

import tensorflow as tf

from tensorflow.python.ops.parsing_ops import FixedLenFeature
from deepctr.estimator import DeepFMEstimator
from deepctr.estimator.inputs import input_fn_tfrecord

if __name__ == "__main__":

1.generate feature_column for linear part and dnn part

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]

(continues on next page)

2.3. Examples 47

https://github.com/shenweichen/DeepCTR/tree/master/examples/criteo_sample.tr.tfrecords
https://github.com/shenweichen/DeepCTR/tree/master/examples/criteo_sample.te.tfrecords

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

dnn_feature_columns = []
linear_feature_columns = []

for i, feat in enumerate(sparse_features):
dnn_feature_columns.append(tf.feature_column.embedding_column(

tf.feature_column.categorical_column_with_identity(feat, 1000), 4))
linear_feature_columns.append(tf.feature_column.categorical_column_with_

→˓identity(feat, 1000))
for feat in dense_features:

dnn_feature_columns.append(tf.feature_column.numeric_column(feat))
linear_feature_columns.append(tf.feature_column.numeric_column(feat))

2.generate input data for model

feature_description = {k: FixedLenFeature(dtype=tf.int64, shape=1) for k in
→˓sparse_features}

feature_description.update(
{k: FixedLenFeature(dtype=tf.float32, shape=1) for k in dense_features})

feature_description['label'] = FixedLenFeature(dtype=tf.float32, shape=1)

train_model_input = input_fn_tfrecord('./criteo_sample.tr.tfrecords', feature_
→˓description, 'label', batch_size=256,

num_epochs=1, shuffle_factor=10)
test_model_input = input_fn_tfrecord('./criteo_sample.te.tfrecords', feature_

→˓description, 'label',
batch_size=2 ** 14, num_epochs=1, shuffle_

→˓factor=0)

3.Define Model,train,predict and evaluate
model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, task='binary

→˓',
config=tf.estimator.RunConfig(tf_random_seed=2021))

model.train(train_model_input)
eval_result = model.evaluate(test_model_input)

print(eval_result)

2.3.8 Estimator with Pandas DataFrame: Classification Criteo

This example shows how to use DeepFMEstimator to solve a simple binary classification task. You can get the
demo data criteo_sample.txt and run the following codes.

import pandas as pd
import tensorflow as tf
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.estimator import DeepFMEstimator
from deepctr.estimator.inputs import input_fn_pandas

if __name__ == "__main__":
data = pd.read_csv('./criteo_sample.txt')

(continues on next page)

48 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/tree/master/examples/criteo_sample.txt

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]

data[sparse_features] = data[sparse_features].fillna('-1',)
data[dense_features] = data[dense_features].fillna(0,)
target = ['label']

1.Label Encoding for sparse features,and do simple Transformation for dense
→˓features

for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

2.count #unique features for each sparse field,and record dense feature field
→˓name

dnn_feature_columns = []
linear_feature_columns = []

for i, feat in enumerate(sparse_features):
dnn_feature_columns.append(tf.feature_column.embedding_column(

tf.feature_column.categorical_column_with_identity(feat, data[feat].max()
→˓+ 1), 4))

linear_feature_columns.append(tf.feature_column.categorical_column_with_
→˓identity(feat, data[feat].max() + 1))

for feat in dense_features:
dnn_feature_columns.append(tf.feature_column.numeric_column(feat))
linear_feature_columns.append(tf.feature_column.numeric_column(feat))

3.generate input data for model

train, test = train_test_split(data, test_size=0.2, random_state=2021)

Not setting default value for continuous feature. filled with mean.

train_model_input = input_fn_pandas(train, sparse_features + dense_features,
→˓'label', shuffle=True)

test_model_input = input_fn_pandas(test, sparse_features + dense_features, None,
→˓shuffle=False)

4.Define Model,train,predict and evaluate
model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, task='binary

→˓',
config=tf.estimator.RunConfig(tf_random_seed=2021))

model.train(train_model_input)
pred_ans_iter = model.predict(test_model_input)
pred_ans = list(map(lambda x: x['pred'], pred_ans_iter))
#
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))

2.3. Examples 49

DeepCTR Documentation, Release 0.9.3

2.3.9 MultiTask Learning:MMOE

The UCI census-income dataset is extracted from the 1994 census database. It contains 299,285 instances of demo-
graphic information of American adults. There are 40 features in total. We construct a multi-task learning problem
from this dataset by setting some of the features as prediction targets :

• Task 1: Predict whether the income exceeds $50K;

• Task 2: Predict whether this person’s marital status is never married.

This example shows how to use MMOE to solve a multi task learning problem. You can get the demo data census-
income.sample and run the following codes.

import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.feature_column import SparseFeat, DenseFeat, get_feature_names
from deepctr.models import MMOE

if __name__ == "__main__":
column_names = ['age', 'class_worker', 'det_ind_code', 'det_occ_code', 'education

→˓', 'wage_per_hour', 'hs_college',
'marital_stat', 'major_ind_code', 'major_occ_code', 'race', 'hisp_

→˓origin', 'sex', 'union_member',
'unemp_reason', 'full_or_part_emp', 'capital_gains', 'capital_

→˓losses', 'stock_dividends',
'tax_filer_stat', 'region_prev_res', 'state_prev_res', 'det_hh_

→˓fam_stat', 'det_hh_summ',
'instance_weight', 'mig_chg_msa', 'mig_chg_reg', 'mig_move_reg',

→˓'mig_same', 'mig_prev_sunbelt',
'num_emp', 'fam_under_18', 'country_father', 'country_mother',

→˓'country_self', 'citizenship',
'own_or_self', 'vet_question', 'vet_benefits', 'weeks_worked',

→˓'year', 'income_50k']
data = pd.read_csv('./census-income.sample', header=None, names=column_names)

data['label_income'] = data['income_50k'].map({' - 50000.': 0, ' 50000+.': 1})
data['label_marital'] = data['marital_stat'].apply(lambda x: 1 if x == ' Never

→˓married' else 0)
data.drop(labels=['income_50k', 'marital_stat'], axis=1, inplace=True)

columns = data.columns.values.tolist()
sparse_features = ['class_worker', 'det_ind_code', 'det_occ_code', 'education',

→˓'hs_college', 'major_ind_code',
'major_occ_code', 'race', 'hisp_origin', 'sex', 'union_member',

→˓ 'unemp_reason',
'full_or_part_emp', 'tax_filer_stat', 'region_prev_res',

→˓'state_prev_res', 'det_hh_fam_stat',
'det_hh_summ', 'mig_chg_msa', 'mig_chg_reg', 'mig_move_reg',

→˓'mig_same', 'mig_prev_sunbelt',
'fam_under_18', 'country_father', 'country_mother', 'country_

→˓self', 'citizenship',
'vet_question']

dense_features = [col for col in columns if
col not in sparse_features and col not in ['label_income',

→˓'label_marital']]

(continues on next page)

50 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/tree/master/examples/census-income.sample
https://github.com/shenweichen/DeepCTR/tree/master/examples/census-income.sample

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

data[sparse_features] = data[sparse_features].fillna('-1',)
data[dense_features] = data[dense_features].fillna(0,)
mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])

fixlen_feature_columns = [SparseFeat(feat, data[feat].max() + 1, embedding_dim=4)
→˓for feat in sparse_features]

+ [DenseFeat(feat, 1,) for feat in dense_features]

dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns

feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)

3.generate input data for model

train, test = train_test_split(data, test_size=0.2, random_state=2020)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate
model = MMOE(dnn_feature_columns, tower_dnn_hidden_units=[], task_types=['binary',

→˓ 'binary'],
task_names=['label_income', 'label_marital'])

model.compile("adam", loss=["binary_crossentropy", "binary_crossentropy"],
metrics=['binary_crossentropy'],)

history = model.fit(train_model_input, [train['label_income'].values, train[
→˓'label_marital'].values],

batch_size=256, epochs=10, verbose=2, validation_split=0.2)
pred_ans = model.predict(test_model_input, batch_size=256)

print("test income AUC", round(roc_auc_score(test['label_income'], pred_ans[0]),
→˓4))

print("test marital AUC", round(roc_auc_score(test['label_marital'], pred_ans[1]),
→˓ 4))

2.4 FAQ

2.4.1 1. Save or load weights/models

To save/load weights,you can write codes just like any other keras models.

model = DeepFM()
model.save_weights('DeepFM_w.h5')
model.load_weights('DeepFM_w.h5')

To save/load models,just a little different.

2.4. FAQ 51

DeepCTR Documentation, Release 0.9.3

from tensorflow.python.keras.models import save_model,load_model
model = DeepFM()
save_model(model, 'DeepFM.h5')# save_model, same as before

from deepctr.layers import custom_objects
model = load_model('DeepFM.h5',custom_objects)# load_model,just add a parameter

2.4.2 2. Set learning rate and use earlystopping

You can use any models in DeepCTR like a keras model object. Here is a example of how to set learning rate and
earlystopping:

import deepctr
from tensorflow.python.keras.optimizers import Adam,Adagrad
from tensorflow.python.keras.callbacks import EarlyStopping

model = deepctr.models.DeepFM(linear_feature_columns,dnn_feature_columns)
model.compile(Adagrad(0.1024),'binary_crossentropy',metrics=['binary_crossentropy'])

es = EarlyStopping(monitor='val_binary_crossentropy')
history = model.fit(model_input, data[target].values,batch_size=256, epochs=10,
→˓verbose=2, validation_split=0.2,callbacks=[es])

If you are using Estimator models, you can set learning rate like:

from deepctr.estimator import DeepFMEstimator
import tensorflow as tf

model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, task='binary',
linear_optimizer=tf.train.FtrlOptimizer(0.05), dnn_

→˓optimizer=tf.train.AdagradOptimizer(0.1)
)

2.4.3 3. Get the attentional weights of feature interactions in AFM

First,make sure that you have install the latest version of deepctr.

Then,use the following code,the attentional_weights[:,i,0] is the feature_interactions[i]’s at-
tentional weight of all samples.

import itertools
import deepctr
from deepctr.models import AFM
from deepctr.feature_column import get_feature_names
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Lambda

model = AFM(linear_feature_columns,dnn_feature_columns)
model.fit(model_input,target)

(continues on next page)

52 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

afmlayer = model.layers[-3]
afm_weight_model = Model(model.input,outputs=Lambda(lambda x:afmlayer.normalized_att_
→˓score)(model.input))
attentional_weights = afm_weight_model.predict(model_input,batch_size=4096)

feature_names = get_feature_names(dnn_feature_columns)
feature_interactions = list(itertools.combinations(feature_names ,2))

2.4.4 4. How to extract the embedding vectors in deepfm?

feature_columns = [SparseFeat('user_id',120,),SparseFeat('item_id',60,),SparseFeat(
→˓'cate_id',60,)]

def get_embedding_weights(dnn_feature_columns,model):
embedding_dict = {}
for fc in dnn_feature_columns:

if hasattr(fc,'embedding_name'):
if fc.embedding_name is not None:

name = fc.embedding_name
else:

name = fc.name
embedding_dict[name] = model.get_layer("sparse_emb_"+name).get_

→˓weights()[0]
return embedding_dict

embedding_dict = get_embedding_weights(feature_columns,model)

user_id_emb = embedding_dict['user_id']
item_id_emb = embedding_dict['item_id']

2.4.5 5. How to add a long dense feature vector as a input to the model?

from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat, DenseFeat,get_feature_names
import numpy as np

feature_columns = [SparseFeat('user_id',120,),SparseFeat('item_id',60,),DenseFeat(
→˓"pic_vec",5)]
fixlen_feature_names = get_feature_names(feature_columns)

user_id = np.array([[1],[0],[1]])
item_id = np.array([[30],[20],[10]])
pic_vec = np.array([[0.1,0.5,0.4,0.3,0.2],[0.1,0.5,0.4,0.3,0.2],[0.1,0.5,0.4,0.3,0.
→˓2]])
label = np.array([1,0,1])

model_input = {'user_id':user_id,'item_id':item_id,'pic_vec':pic_vec}

model = DeepFM(feature_columns,feature_columns)
model.compile('adagrad','binary_crossentropy')
model.fit(model_input,label)

2.4. FAQ 53

DeepCTR Documentation, Release 0.9.3

2.4.6 6. How to use pretrained weights to initialize embedding weights and frozen
embedding weights?

Use tf.initializers.identity() to set the embeddings_initializer of SparseFeat,and set
trainable=False to frozen embedding weights.

import numpy as np
import tensorflow as tf
from deepctr.models import DeepFM
from deepctr.feature_column import SparseFeat,get_feature_names

pretrained_item_weights = np.random.randn(60,4)
pretrained_weights_initializer = tf.initializers.constant(pretrained_item_weights)

feature_columns = [SparseFeat('user_id',120,),SparseFeat('item_id',60,embedding_dim=4,
→˓embeddings_initializer=pretrained_weights_initializer,trainable=False)]
fixlen_feature_names = get_feature_names(feature_columns)

user_id = np.array([[1],[0],[1]])
item_id = np.array([[30],[20],[10]])
label = np.array([1,0,1])

model_input = {'user_id':user_id,'item_id':item_id,}

model = DeepFM(feature_columns,feature_columns)
model.compile('adagrad','binary_crossentropy')
model.fit(model_input,label)

2.4.7 7. How to run the demo with GPU ?

just install deepctr with

$ pip install deepctr[gpu]

2.4.8 8. How to run the demo with multiple GPUs

you can use multiple gpus with tensorflow version higher than 1.4,see run_classification_criteo_multi_gpu.py

2.5 History

• 11/10/2022 : v0.9.3 released.Add EDCN.

• 10/15/2022 : v0.9.2 released.Support python 3.9,3.10.

• 06/11/2022 : v0.9.1 released.Improve compatibility with tensorflow 2.x.

• 09/03/2021 : v0.9.0 released.Add multitask learning models:SharedBottom,ESMM,MMOE and PLE. running
example

• 07/18/2021 : v0.8.7 released.Support pre-defined key-value vocabulary in Hash Layer. example

• 06/14/2021 : v0.8.6 released.Add IFM DIFM, FEFM and DeepFEFM model.

54 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/blob/master/examples/run_classification_criteo_multi_gpu.py
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.3
./Features.html#edcn-enhancing-explicit-and-implicit-feature-interactions-dcn
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.1
https://github.com/shenweichen/DeepCTR/releases/tag/v0.9.0
./Features.html#sharedbottom
./Features.html#esmm-entire-space-multi-task-model
./Features.html#mmoe-multi-gate-mixture-of-experts
./Features.html#ple-progressive-layered-extraction
./Examples.html#multitask-learning-mmoe
./Examples.html#multitask-learning-mmoe
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.7
./Examples.html#hash-layer-with-pre-defined-key-value-vocabulary
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.6
./Features.html#ifm-input-aware-factorization-machine
./Features.html#difm-dual-input-aware-factorization-machine
./Features.html#deepfefm-deep-field-embedded-factorization-machine

DeepCTR Documentation, Release 0.9.3

• 03/13/2021 : v0.8.5 released.Add BST model.

• 02/12/2021 : v0.8.4 released.Fix bug in DCN-Mix.

• 01/06/2021 : v0.8.3 released.Add DCN-Mix model.Support transform_fn in DenseFeat.

• 10/11/2020 : v0.8.2 released.Refactor DNN Layer.

• 09/12/2020 : v0.8.1 released.Improve the reproducibility & fix some bugs.

• 06/27/2020 : v0.8.0 released.

– Support Tensorflow Estimator for large scale data and distributed training. example: Estimator
with TFRecord

– Support different initializers for different embedding weights and loading pretrained embeddings. example

– Add new model FwFM.

• 05/17/2020 : v0.7.5 released.Fix numerical instability in LayerNormalization.

• 03/15/2020 : v0.7.4 released.Add FLEN and FieldWiseBiInteraction.

• 03/04/2020 : v0.7.3 released.Fix the inconsistency of prediction results when the model is loaded with trained
weights.

• 02/08/2020 : v0.7.2 released.Fix some bugs.

• 01/28/2020 : v0.7.1 released.Simplify VarLenSparseFeat,support setting weight_normalization.Fix problem of
embedding size of SparseFeat in linear_feature_columns.

• 11/24/2019 : v0.7.0 released.Refactor feature columns.Different features can use different embedding_dim
and group-wise interaction is available by setting group_name.

• 11/06/2019 : v0.6.3 released.Add WeightedSequenceLayer and support weighted sequence feature input.

• 10/03/2019 : v0.6.2 released.Simplify the input logic.

• 09/08/2019 : v0.6.1 released.Fix bugs in CCPM and DynamicGRU.

• 08/02/2019 : v0.6.0 released.Now DeepCTR is compatible with tensorflow 1.14 and 2.0.0.

• 07/21/2019 : v0.5.2 released.Refactor Linear Layer.

• 07/10/2019 : v0.5.1 released.Add FiBiNET.

• 06/30/2019 : v0.5.0 released.Refactor inputs module.

• 05/19/2019 : v0.4.1 released.Add DSIN.

• 05/04/2019 : v0.4.0 released.Support feature hashing on the fly and python2.7.

• 04/27/2019 : v0.3.4 released.Add FGCNN and FGCNNLayer.

• 04/21/2019 : v0.3.3 released.Add CCPM.

• 03/30/2019 : v0.3.2 released.Add DIEN and ONN Model.

• 02/17/2019 : v0.3.1 released.Refactor layers ,add BiLSTM and Transformer.

• 01/24/2019 : v0.2.3 released.Use a new feature config generation method and fix bugs.

• 01/01/2019 : v0.2.2 released.Add sequence(multi-value) input support for AFM,AutoInt,DCN,DeepFM,
FNN,NFM,PNN,xDeepFM models.

• 12/27/2018 : v0.2.1 released.Add AutoInt Model.

• 12/22/2018 : v0.2.0 released.Add xDeepFM and automatic check for new version.

2.5. History 55

https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.5
./Features.html#bst-behavior-sequence-transformer
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.4
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.3
./Features.html#dcn-mix-improved-deep-cross-network-with-mix-of-experts-and-matrix-kernel
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.1
https://github.com/shenweichen/DeepCTR/releases/tag/v0.8.0
./Examples.html#estimator-with-tfrecord-classification-criteo
./Examples.html#estimator-with-tfrecord-classification-criteo
./FAQ.html#how-to-use-pretrained-weights-to-initialize-embedding-weights-and-frozen-embedding-weights
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.5
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.4
./Features.html#flen-field-leveraged-embedding-network
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.3
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.1
./Features.html#varlensparsefeat
https://github.com/shenweichen/DeepCTR/releases/tag/v0.7.0
./Features.html#feature-columns
https://github.com/shenweichen/DeepCTR/releases/tag/v0.6.3
./Examples.html#multi-value-input-movielens
https://github.com/shenweichen/DeepCTR/releases/tag/v0.6.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.6.1
https://github.com/shenweichen/DeepCTR/releases/tag/v0.6.0
https://github.com/shenweichen/DeepCTR/releases/tag/v0.5.2
https://github.com/shenweichen/DeepCTR/releases/tag/v0.5.1
./Features.html#fibinet-feature-importance-and-bilinear-feature-interaction-network
https://github.com/shenweichen/DeepCTR/releases/tag/v0.5.0
https://github.com/shenweichen/DeepCTR/releases/tag/v0.4.1
./Features.html#dsin-deep-session-interest-network
https://github.com/shenweichen/DeepCTR/releases/tag/v0.4.0
./Examples.html#classification-criteo-with-feature-hashing-on-the-fly
https://github.com/shenweichen/DeepCTR/releases/tag/v0.3.4
./Features.html#fgcnn-feature-generation-by-convolutional-neural-network
https://github.com/shenweichen/DeepCTR/releases/tag/v0.3.3
./Features.html#ccpm-convolutional-click-prediction-model
https://github.com/shenweichen/DeepCTR/releases/tag/v0.3.2
./Features.html#dien-deep-interest-evolution-network
./Features.html#onn-operation-aware-neural-networks-for-user-response-prediction
https://github.com/shenweichen/DeepCTR/releases/tag/v0.3.1
https://github.com/shenweichen/DeepCTR/releases/tag/v0.2.3
https://github.com/shenweichen/DeepCTR/releases/tag/v0.2.2
./Examples.html#multi-value-input-movielens
https://github.com/shenweichen/DeepCTR/releases/tag/v0.2.1
./Features.html#autoint-automatic-feature-interaction
https://github.com/shenweichen/DeepCTR/releases/tag/v0.2.0
./Features.html#xdeepfm

DeepCTR Documentation, Release 0.9.3

• 12/19/2018 : v0.1.6 released.Now DeepCTR is compatible with tensorflow from 1.4-1.12 except for 1.7
and 1.8.

• 11/29/2018 : v0.1.4 released.Add FAQ in docs

• 11/24/2018 : DeepCTR first version v0.1.0 is released on PyPi

2.6 DeepCTR Models API

2.6.1 Methods

compile

compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_
→˓mode=None, weighted_metrics=None, target_tensors=None)

Configures the model for training.

Arguments

• optimizer: String (name of optimizer) or optimizer instance. See optimizers.

• loss: String (name of objective function) or objective function. See losses. If the model has multiple outputs,
you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be
minimized by the model will then be the sum of all individual losses.

• metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use
metrics=['accuracy']. To specify different metrics for different outputs of a multi-output model, you
could also pass a dictionary, such as metrics={'output_a': 'accuracy'}.

• loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contri-
butions of different model outputs. The loss value that will be minimized by the model will then be the weighted
sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1
mapping to the model’s outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients.

• sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to
"temporal". None defaults to sample-wise weights (1D). If the model has multiple outputs, you can use
a different sample_weight_mode on each output by passing a dictionary or a list of modes.

• weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during
training and testing.

• target_tensors: By default, Keras will create placeholders for the model’s target, which will be fed with the
target data during training. If instead you would like to use your own target tensors (in turn, Keras will not
expect external Numpy data for these targets at training time), you can specify them via the target_tensors
argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names
to target tensors.

Raises

• ValueError: In case of invalid arguments for optimizer, loss, metrics or sample_weight_mode.

fit

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_
→˓split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_
→˓weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None,
→˓validation_freq=1)

(continues on next page)

56 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR/releases/tag/v0.1.6
https://github.com/shenweichen/DeepCTR/releases/tag/v0.1.4
./FAQ.html
https://pypi.org/project/deepctr/
https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/optimizers/
https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/losses

DeepCTR Documentation, Release 0.9.3

(continued from previous page)

Trains the model for a given number of epochs (iterations on a dataset).

Arguments

• x: Numpy array of training data (if the model has a single input), or list of Numpy arrays (if the model has
multiple inputs). If input layers in the model are named, you can also pass a dictionary mapping input names
to Numpy arrays. x can be None (default) if feeding from framework-native tensors (e.g. TensorFlow data
tensors).

• y: Numpy array of target (label) data (if the model has a single output), or list of Numpy arrays (if the model
has multiple outputs). If output layers in the model are named, you can also pass a dictionary mapping output
names to Numpy arrays. y can be None (default) if feeding from framework-native tensors (e.g. TensorFlow
data tensors).

• batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will
default to 32.

• epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire x and y data
provided. Note that in conjunction with initial_epoch, epochs is to be understood as “final epoch”. The
model is not trained for a number of iterations given by epochs, but merely until the epoch of index epochs
is reached.

• verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during training
and validation (if). See callbacks.

• validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model
will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model
metrics on this data at the end of each epoch. The validation data is selected from the last samples in the x and
y data provided, before shuffling.

• validation_data: tuple (x_val, y_val) or tuple (x_val, y_val, val_sample_weights) on
which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained
on this data. validation_data will override validation_split.

• shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for ‘batch’). ‘batch’ is a special
option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when
steps_per_epoch is not None.

• class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting
the loss function (during training only). This can be useful to tell the model to “pay more attention” to samples
from an under-represented class.

• sample_weight: Optional Numpy array of weights for the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples
(1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape
(samples, sequence_length), to apply a different weight to every timestep of every sample. In this
case you should make sure to specify sample_weight_mode="temporal" in compile().

• initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run).

• steps_per_epoch: Integer or None. Total number of steps (batches of samples) before declaring one epoch
finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the
default None is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot
be determined. validation_steps: Only relevant if steps_per_epoch is specified. Total number of steps
(batches of samples) to validate before stopping.

2.6. DeepCTR Models API 57

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks

DeepCTR Documentation, Release 0.9.3

• validation_freq: Only relevant if validation data is provided. Integer or list/tuple/set. If an integer, specifies
how many training epochs to run before a new validation run is performed, e.g. validation_freq=2
runs validation every 2 epochs. If a list, tuple, or set, specifies the epochs on which to run validation, e.g.
validation_freq=[1, 2, 10] runs validation at the end of the 1st, 2nd, and 10th epochs.

Returns

• A History object. Its History.history attribute is a record of training loss values and metrics values at
successive epochs, as well as validation loss values and validation metrics values (if applicable).

Raises

• RuntimeError: If the model was never compiled. ValueError: In case of mismatch between the provided input
data and what the model expects.

evaluate

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None,
→˓callbacks=None)

Returns the loss value & metrics values for the model in test mode. Computation is done in batches.

Arguments

• x: Numpy array of test data (if the model has a single input), or list of Numpy arrays (if the model has multiple
inputs). If input layers in the model are named, you can also pass a dictionary mapping input names to Numpy
arrays. x can be None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors).

• y: Numpy array of target (label) data (if the model has a single output), or list of Numpy arrays (if the model
has multiple outputs). If output layers in the model are named, you can also pass a dictionary mapping output
names to Numpy arrays. y can be None (default) if feeding from framework-native tensors (e.g. TensorFlow
data tensors).

• batch_size: Integer or None. Number of samples per evaluation step. If unspecified, batch_sizewill default
to 32.

• verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar.

• sample_weight: Optional Numpy array of weights for the test samples, used for weighting the loss function.
You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping be-
tween weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples,
sequence_length), to apply a different weight to every timestep of every sample. In this case you should
make sure to specify sample_weight_mode="temporal" in compile().

• steps: Integer or None. Total number of steps (batches of samples) before declaring the evaluation round
finished. Ignored with the default value of None.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during evalua-
tion. See callbacks.

Returns

• Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple
outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar
outputs.

58 Chapter 2. DisscussionGroup

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks

DeepCTR Documentation, Release 0.9.3

predict

predict(x, batch_size=None, verbose=0, steps=None, callbacks=None)

Generates output predictions for the input samples.

Computation is done in batches.

Arguments

• x: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size:
Integer. If unspecified, it will default to 32.

• verbose: Verbosity mode, 0 or 1.

• steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with
the default value of None.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during predic-
tion. See callbacks.

Returns

• Numpy array(s) of predictions.

Raises

• ValueError: In case of mismatch between the provided input data and the model’s expectations, or in case a
stateful model receives a number of samples that is not a multiple of the batch size.

train_on_batch

train_on_batch(x, y, sample_weight=None, class_weight=None)

Runs a single gradient update on a single batch of data.

Arguments

• x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the
model are named, you can also pass a dictionary mapping input names to Numpy arrays.

• y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the
model are named, you can also pass a dictionary mapping output names to Numpy arrays.

• sample_weight: Optional array of the same length as x, containing weights to apply to the model’s loss for
each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length),
to apply a different weight to every timestep of every sample. In this case you should make sure to specify
sample_weight_mode=”temporal” in compile().

• class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model’s
loss for the samples from this class during training. This can be useful to tell the model to “pay more attention”
to samples from an under-represented class.

Returns

• Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple
outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar
outputs.

2.6. DeepCTR Models API 59

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks

DeepCTR Documentation, Release 0.9.3

test_on_batch

test_on_batch(x, y, sample_weight=None)

Test the model on a single batch of samples.

Arguments

• x: Numpy array of test data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model
are named, you can also pass a dictionary mapping input names to Numpy arrays.

• y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the
model are named, you can also pass a dictionary mapping output names to Numpy arrays.

• sample_weight: Optional array of the same length as x, containing weights to apply to the model’s loss for
each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length),
to apply a different weight to every timestep of every sample. In this case you should make sure to specify
sample_weight_mode="temporal" in compile().

Returns

• Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple
outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar
outputs.

predict_on_batch

predict_on_batch(x)

Returns predictions for a single batch of samples.

Arguments

• x: Input samples, as a Numpy array.

Returns

• Numpy array(s) of predictions.

fit_generator

fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None,
→˓validation_data=None, validation_steps=None, validation_freq=1, class_weight=None,
→˓max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_
→˓epoch=0)

Trains the model on data generated batch-by-batch by a Python generator (or an instance of Sequence). The gener-
ator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on
images on CPU in parallel to training your model on GPU. The use of tf.keras.utils.Sequence guarantees
the ordering and guarantees the single use of every input per epoch when using use_multiprocessing=True.

Arguments

• generator: A generator or an instance of Sequence (tf.keras.utils.Sequence) object in order to
avoid duplicate data when using multiprocessing. The output of the generator must be either

a tuple (inputs, targets) or a tuple (inputs, targets, sample_weights).This tuple (a sin-
gle output of the generator) makes a single batch. Therefore, all arrays in this tuple must have the same length
(equal to the size of this batch). Different batches may have different sizes. For example, the last batch of the

60 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

epoch is commonly smaller than the others, if the size of the dataset is not divisible by the batch size. The
generator is expected to loop over its data indefinitely. An epoch finishes when steps_per_epoch batches
have been seen by the model.

• steps_per_epoch: Integer. Total number of steps (batches of samples) to yield from generator before declar-
ing one epoch finished and starting the next epoch. It should typically be equal to ceil(num_samples /
batch_size) Optional for Sequence: if unspecified, will use the len(generator) as a number of
steps.

• epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire data provided, as
defined by steps_per_epoch. Note that in conjunction with initial_epoch, epochs is to be under-
stood as “final epoch”. The model is not trained for a number of iterations given by epochs, but merely until
the epoch of index epochs is reached.

• verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during training.
See callbacks.

• validation_data: This can be either a generator or a Sequence object for the validation data tuple (x_val,
y_val) tuple (x_val, y_val, val_sample_weights) on which to evaluate the loss and any model
metrics at the end of each epoch. The model will not be trained on this data.

• validation_steps: Only relevant if validation_data is a generator. Total number of steps (batches of
samples) to yield from validation_data generator before stopping at the end of every epoch. It should
typically be equal to the number of samples of your validation dataset divided by the batch size. Optional for
Sequence: if unspecified, will use the len(validation_data) as a number of steps.

• validation_freq: Only relevant if validation data is provided. Integer or collections.Container in-
stance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation
run is performed, e.g. validation_freq=2 runs validation every 2 epochs. If a Container, specifies the
epochs on which to run validation, e.g. validation_freq=[1, 2, 10] runs validation at the end of the
1st, 2nd, and 10th epochs.

• class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting
the loss function (during training only). This can be useful to tell the model to “pay more attention” to samples
from an under-represented class.

• max_queue_size: Integer. Maximum size for the generator queue. If unspecified, max_queue_size will
default to 10.

• workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspeci-
fied, workers will default to 1. If 0, will execute the generator on the main thread.

• use_multiprocessing: Boolean. If True, use process-based threading. If unspecified,
use_multiprocessing will default to False. Note that because this implementation relies on
multiprocessing, you should not pass non-picklable arguments to the generator as they can’t be passed easily to
children processes.

• shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with
instances of Sequence (tf.keras.utils.Sequence). Has no effect when steps_per_epoch is not
None. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run).

Returns

• A History object. Its History.history attribute is a record of training loss values and metrics values at
successive epochs, as well as validation loss values and validation metrics values (if applicable).

Raises

• ValueError: In case the generator yields data in an invalid format.

2.6. DeepCTR Models API 61

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks

DeepCTR Documentation, Release 0.9.3

Example

def generate_arrays_from_file(path):
while True:

with open(path) as f:
for line in f:

create numpy arrays of input data
and labels, from each line in the file
x1, x2, y = process_line(line)
yield ({'input_1': x1, 'input_2': x2}, {'output': y})

model.fit_generator(generate_arrays_from_file('/my_file.txt'),
steps_per_epoch=10000, epochs=10)

evaluate_generator

evaluate_generator(generator, steps=None, callbacks=None, max_queue_size=10,
→˓workers=1, use_multiprocessing=False, verbose=0)

Evaluates the model on a data generator. The generator should return the same kind of data as accepted by
test_on_batch.

Arguments

• generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) or an instance of
Sequence (tf.keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing.

• steps: Total number of steps (batches of samples) to yield from generator before stopping. Optional for
Sequence: if unspecified, will use the len(generator) as a number of steps.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during training.
See callbacks.

• max_queue_size: maximum size for the generator queue

• workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified,
workers will default to 1. If 0, will execute the generator on the main thread.

• use_multiprocessing: if True, use process based threading. Note that because this implementation relies on
multiprocessing, you should not pass non picklable arguments to the generator as they can’t be passed easily to
children processes.

• verbose: verbosity mode, 0 or 1.

Returns

• Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple
outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar
outputs.

Raises

• ValueError: In case the generator yields data in an invalid format.

predict_generator

predict_generator(generator, steps=None, callbacks=None, max_queue_size=10, workers=1,
→˓ use_multiprocessing=False, verbose=0)

62 Chapter 2. DisscussionGroup

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks

DeepCTR Documentation, Release 0.9.3

Generates predictions for the input samples from a data generator. The generator should return the same kind of data
as accepted by predict_on_batch.

Arguments

• generator: Generator yielding batches of input samples or an instance of Sequence (tf.keras.utils.
Sequence) object in order to avoid duplicate data when using multiprocessing.

• steps: Total number of steps (batches of samples) to yield from generator before stopping. Optional for
Sequence: if unspecified, will use the len(generator) as a number of steps.

• callbacks: List of tf.keras.callbacks.Callback instances. List of callbacks to apply during training.
See callbacks.

• max_queue_size: Maximum size for the generator queue.

• workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified,
workers will default to 1. If 0, will execute the generator on the main thread.

• use_multiprocessing: If True, use process based threading. Note that because this implementation relies on
multiprocessing, you should not pass non picklable arguments to the generator as they can’t be passed easily to
children processes.

• verbose: verbosity mode, 0 or 1.

Returns

• Numpy array(s) of predictions.

Raises

• ValueError: In case the generator yields data in an invalid format.

get_layer

get_layer(name=None, index=None)

Retrieves a layer based on either its name (unique) or index. If name and index are both provided, index will take
precedence. Indices are based on order of horizontal graph traversal (bottom-up).

Arguments

• name: String, name of layer.

• index: Integer, index of layer.

Returns

• A layer instance.

Raises

• ValueError: In case of invalid layer name or index.

2.6.2 deepctr.models.ccpm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Liu Q, Yu F, Wu S, et al. A convolutional click prediction model[C]//Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM, 2015: 1743-1746. (http:
//ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf)

2.6. DeepCTR Models API 63

https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/keras/callbacks
mailto:weichenswc@163.com
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf

DeepCTR Documentation, Release 0.9.3

deepctr.models.ccpm.CCPM(linear_feature_columns, dnn_feature_columns, conv_kernel_width=(6,
5), conv_filters=(4, 4), dnn_hidden_units=(128, 64), l2_reg_linear=1e-
05, l2_reg_embedding=1e-05, l2_reg_dnn=0, dnn_dropout=0,
seed=1024, task=’binary’)

Instantiates the Convolutional Click Prediction Model architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• conv_kernel_width – list,list of positive integer or empty list,the width of filter in each
conv layer.

• conv_filters – list,list of positive integer or empty list,the number of filters in each
conv layer.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN.

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• init_std – float,to use as the initialize std of embedding vector

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.3 deepctr.models.fnn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]//European conference on
information retrieval. Springer, Cham, 2016: 45-57.(https://arxiv.org/pdf/1601.02376.pdf)

deepctr.models.fnn.FNN(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_embedding=1e-05, l2_reg_linear=1e-05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’, task=’binary’)

Instantiates the Factorization-supported Neural Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_linear – float. L2 regularizer strength applied to linear weight

64 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com
https://arxiv.org/pdf/1601.02376.pdf

DeepCTR Documentation, Release 0.9.3

• l2_reg_dnn – float . L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.4 deepctr.models.pnn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//Data
Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.(https://arxiv.org/pdf/
1611.00144.pdf)

deepctr.models.pnn.PNN(dnn_feature_columns, dnn_hidden_units=(256, 128, 64),
l2_reg_embedding=1e-05, l2_reg_dnn=0, seed=1024, dnn_dropout=0,
dnn_activation=’relu’, use_inner=True, use_outter=False, ker-
nel_type=’mat’, task=’binary’)

Instantiates the Product-based Neural Network architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float . L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• use_inner – bool,whether use inner-product or not.

• use_outter – bool,whether use outter-product or not.

• kernel_type – str,kernel_type used in outter-product,can be 'mat' , 'vec' or 'num'

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.5 deepctr.models.wdl module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.(https://arxiv.org/pdf/
1606.07792.pdf)

2.6. DeepCTR Models API 65

mailto:weichenswc@163.com
https://arxiv.org/pdf/1611.00144.pdf
https://arxiv.org/pdf/1611.00144.pdf
mailto:weichenswc@163.com
https://arxiv.org/pdf/1606.07792.pdf
https://arxiv.org/pdf/1606.07792.pdf

DeepCTR Documentation, Release 0.9.3

deepctr.models.wdl.WDL(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-05, l2_reg_embedding=1e-05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’, task=’binary’)

Instantiates the Wide&Deep Learning architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to wide part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.6 deepctr.models.deepfm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr predic-
tion[J]. arXiv preprint arXiv:1703.04247, 2017.(https://arxiv.org/abs/1703.04247)

deepctr.models.deepfm.DeepFM(linear_feature_columns, dnn_feature_columns,
fm_group=(’default_group’,), dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-05, l2_reg_embedding=1e-05,
l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation=’relu’,
dnn_use_bn=False, task=’binary’)

Instantiates the DeepFM Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by the linear
part of the model.

• dnn_feature_columns – An iterable containing all the features used by the deep part
of the model.

• fm_group – list, group_name of features that will be used to do feature interactions.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

66 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.7 deepctr.models.mlr module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Gai K, Zhu X, Li H, et al. Learning Piece-wise Linear Models from Large Scale Data for Ad Click
Prediction[J]. arXiv preprint arXiv:1704.05194, 2017.(https://arxiv.org/abs/1704.05194)

deepctr.models.mlr.MLR(region_feature_columns, base_feature_columns=None, re-
gion_num=4, l2_reg_linear=1e-05, seed=1024, task=’binary’,
bias_feature_columns=None)

Instantiates the Mixed Logistic Regression/Piece-wise Linear Model.

Parameters

• region_feature_columns – An iterable containing all the features used by region
part of the model.

• base_feature_columns – An iterable containing all the features used by base part of
the model.

• region_num – integer > 1,indicate the piece number

• l2_reg_linear – float. L2 regularizer strength applied to weight

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

• bias_feature_columns – An iterable containing all the features used by bias part of
the model.

Returns A Keras model instance.

2.6.8 deepctr.models.nfm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of
the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
2017: 355-364. (https://arxiv.org/abs/1708.05027)

deepctr.models.nfm.NFM(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_embedding=1e-05, l2_reg_linear=1e-05, l2_reg_dnn=0,
seed=1024, bi_dropout=0, dnn_dropout=0, dnn_activation=’relu’,
task=’binary’)

Instantiates the Neural Factorization Machine architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

2.6. DeepCTR Models API 67

mailto:weichenswc@163.com
mailto:weichenswc@163.com
https://arxiv.org/abs/1708.05027

DeepCTR Documentation, Release 0.9.3

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_linear – float. L2 regularizer strength applied to linear part.

• l2_reg_dnn – float . L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• biout_dropout – When not None, the probability we will drop out the output of BiIn-
teractionPooling Layer.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in deep net

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.9 deepctr.models.afm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017. (https://arxiv.org/abs/1708.04617)

deepctr.models.afm.AFM(linear_feature_columns, dnn_feature_columns, fm_group=’default_group’,
use_attention=True, attention_factor=8, l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, l2_reg_att=1e-05, afm_dropout=0, seed=1024,
task=’binary’)

Instantiates the Attentional Factorization Machine architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• fm_group – list, group_name of features that will be used to do feature interactions.

• use_attention – bool,whether use attention or not,if set to False.it is the same as
standard Factorization Machine

• attention_factor – positive integer,units in attention net

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_att – float. L2 regularizer strength applied to attention net

• afm_dropout – float in [0,1), Fraction of the attention net output units to dropout.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

68 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

2.6.10 deepctr.models.dcn module

Author: Weichen Shen, weichenswc@163.com

Shuxun Zan, zanshuxun@aliyun.com

Reference: [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the
ADKDD’17. ACM, 2017: 12. (https://arxiv.org/abs/1708.05123)

[2] Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross
Learning in Web-scale Learning to Rank Systems[J]. 2020. (https://arxiv.org/abs/2008.13535)

deepctr.models.dcn.DCN(linear_feature_columns, dnn_feature_columns, cross_num=2,
cross_parameterization=’vector’, dnn_hidden_units=(256, 128, 64),
l2_reg_linear=1e-05, l2_reg_embedding=1e-05, l2_reg_cross=1e-
05, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_use_bn=False,
dnn_activation=’relu’, task=’binary’)

Instantiates the Deep&Cross Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• cross_num – positive integet,cross layer number

• cross_parameterization – str, "vector" or "matrix", how to parameterize the
cross network.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_cross – float. L2 regularizer strength applied to cross net

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not DNN

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.11 deepctr.models.dcnmix module

Author: Weichen Shen, weichenswc@163.com

Shuxun Zan, zanshuxun@aliyun.com

Reference: [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the
ADKDD’17. ACM, 2017: 12. (https://arxiv.org/abs/1708.05123)

2.6. DeepCTR Models API 69

mailto:weichenswc@163.com
mailto:zanshuxun@aliyun.com
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535
mailto:weichenswc@163.com
mailto:zanshuxun@aliyun.com
https://arxiv.org/abs/1708.05123

DeepCTR Documentation, Release 0.9.3

[2] Wang R, Shivanna R, Cheng D Z, et al. DCN V2: Improved Deep & Cross Network and Practical Lessons
for Web-scale Learning to Rank Systems[J]. 2020. (https://arxiv.org/abs/2008.13535)

deepctr.models.dcnmix.DCNMix(linear_feature_columns, dnn_feature_columns, cross_num=2,
dnn_hidden_units=(256, 128, 64), l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, low_rank=32, num_experts=4,
l2_reg_cross=1e-05, l2_reg_dnn=0, seed=1024, dnn_dropout=0,
dnn_use_bn=False, dnn_activation=’relu’, task=’binary’)

Instantiates the Deep&Cross Network with mixture of experts architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• cross_num – positive integet,cross layer number

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_cross – float. L2 regularizer strength applied to cross net

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not DNN

• dnn_activation – Activation function to use in DNN

• low_rank – Positive integer, dimensionality of low-rank sapce.

• num_experts – Positive integer, number of experts.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.12 deepctr.models.sequence.din module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:
1059-1068. (https://arxiv.org/pdf/1706.06978.pdf)

deepctr.models.sequence.din.DIN(dnn_feature_columns, history_feature_list, dnn_use_bn=False,
dnn_hidden_units=(256, 128, 64), dnn_activation=’relu’,
att_hidden_size=(80, 40), att_activation=’dice’,
att_weight_normalization=False, l2_reg_dnn=0,
l2_reg_embedding=1e-06, dnn_dropout=0, seed=1024,
task=’binary’)

Instantiates the Deep Interest Network architecture.

Parameters

70 Chapter 2. DisscussionGroup

https://arxiv.org/abs/2008.13535
mailto:weichenswc@163.com
https://arxiv.org/pdf/1706.06978.pdf

DeepCTR Documentation, Release 0.9.3

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• history_feature_list – list,to indicate sequence sparse field

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in deep
net

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• dnn_activation – Activation function to use in deep net

• att_hidden_size – list,list of positive integer , the layer number and units in each layer
of attention net

• att_activation – Activation function to use in attention net

• att_weight_normalization – bool.Whether normalize the attention score of local
activation unit.

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.13 deepctr.models.sequence.dien module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Zhou G, Mou N, Fan Y, et al. Deep Interest Evolution Network for Click-Through Rate Prediction[J].
arXiv preprint arXiv:1809.03672, 2018. (https://arxiv.org/pdf/1809.03672.pdf)

deepctr.models.sequence.dien.DIEN(dnn_feature_columns, history_feature_list,
gru_type=’GRU’, use_negsampling=False, alpha=1.0,
use_bn=False, dnn_hidden_units=(256, 128, 64),
dnn_activation=’relu’, att_hidden_units=(64, 16),
att_activation=’dice’, att_weight_normalization=True,
l2_reg_dnn=0, l2_reg_embedding=1e-06, dnn_dropout=0,
seed=1024, task=’binary’)

Instantiates the Deep Interest Evolution Network architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• history_feature_list – list,to indicate sequence sparse field

• gru_type – str,can be GRU AIGRU AUGRU AGRU

• use_negsampling – bool, whether or not use negtive sampling

• alpha – float ,weight of auxiliary_loss

• use_bn – bool. Whether use BatchNormalization before activation or not in deep net

2.6. DeepCTR Models API 71

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• dnn_activation – Activation function to use in DNN

• att_hidden_units – list,list of positive integer , the layer number and units in each
layer of attention net

• att_activation – Activation function to use in attention net

• att_weight_normalization – bool.Whether normalize the attention score of local
activation unit.

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• init_std – float,to use as the initialize std of embedding vector

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.14 deepctr.models.sequence.dsin module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Feng Y, Lv F, Shen W, et al. Deep Session Interest Network for Click-Through Rate Prediction[J].
arXiv preprint arXiv:1905.06482, 2019.(https://arxiv.org/abs/1905.06482)

deepctr.models.sequence.dsin.DSIN(dnn_feature_columns, sess_feature_list,
sess_max_count=5, bias_encoding=False,
att_embedding_size=1, att_head_num=8,
dnn_hidden_units=(256, 128, 64), dnn_activation=’relu’,
dnn_dropout=0, dnn_use_bn=False, l2_reg_dnn=0,
l2_reg_embedding=1e-06, seed=1024, task=’binary’)

Instantiates the Deep Session Interest Network architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• sess_feature_list – list,to indicate sequence sparse field

• sess_max_count – positive int, to indicate the max number of sessions

• sess_len_max – positive int, to indicate the max length of each session

• bias_encoding – bool. Whether use bias encoding or postional encoding

• att_embedding_size – positive int, the embedding size of each attention head

• att_head_num – positive int, the number of attention head

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• dnn_activation – Activation function to use in deep net

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

72 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in deep
net

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.15 deepctr.models.sequence.bst module

Author: Zichao Li, 2843656167@qq.com

Reference: Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for
e-commerce recommendation in Alibaba. In Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data (DLP-KDD ‘19). Association for Computing Machinery, New York,
NY, USA, Article 12, 1–4. DOI:https://doi.org/10.1145/3326937.3341261

deepctr.models.sequence.bst.BST(dnn_feature_columns, history_feature_list, trans-
former_num=1, att_head_num=8, use_bn=False,
dnn_hidden_units=(256, 128, 64), dnn_activation=’relu’,
l2_reg_dnn=0, l2_reg_embedding=1e-06, dnn_dropout=0.0,
seed=1024, task=’binary’)

Instantiates the BST architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• history_feature_list – list, to indicate sequence sparse field.

• transformer_num – int, the number of transformer layer.

• att_head_num – int, the number of heads in multi-head self attention.

• use_bn – bool. Whether use BatchNormalization before activation or not in deep net

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• dnn_activation – Activation function to use in DNN

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.16 deepctr.models.xdeepfm module

Author: Weichen Shen, weichenswc@163.com

2.6. DeepCTR Models API 73

mailto:2843656167@qq.com
mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

Reference: [1] Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for
Recommender Systems[J]. arXiv preprint arXiv:1803.05170, 2018.(https://arxiv.org/pdf/1803.05170.pdf)

deepctr.models.xdeepfm.xDeepFM(linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128, 64), cin_layer_size=(128, 128),
cin_split_half=True, cin_activation=’relu’, l2_reg_linear=1e-
05, l2_reg_embedding=1e-05, l2_reg_dnn=0, l2_reg_cin=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’,
dnn_use_bn=False, task=’binary’)

Instantiates the xDeepFM architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• cin_layer_size – list,list of positive integer or empty list, the feature maps in each
hidden layer of Compressed Interaction Network

• cin_split_half – bool.if set to True, half of the feature maps in each hidden will
connect to output unit

• cin_activation – activation function used on feature maps

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – L2 regularizer strength applied to embedding vector

• l2_reg_dnn – L2 regularizer strength applied to deep net

• l2_reg_cin – L2 regularizer strength applied to CIN.

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.17 deepctr.models.autoint module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive
Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.(https://arxiv.org/abs/1810.11921)

deepctr.models.autoint.AutoInt(linear_feature_columns, dnn_feature_columns,
att_layer_num=3, att_embedding_size=8, att_head_num=2,
att_res=True, dnn_hidden_units=(256, 128,
64), dnn_activation=’relu’, l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, l2_reg_dnn=0, dnn_use_bn=False,
dnn_dropout=0, seed=1024, task=’binary’)

74 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

Instantiates the AutoInt Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• att_layer_num – int.The InteractingLayer number to be used.

• att_embedding_size – int.The embedding size in multi-head self-attention network.

• att_head_num – int.The head number in multi-head self-attention network.

• att_res – bool.Whether or not use standard residual connections before output.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• dnn_activation – Activation function to use in DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.18 deepctr.models.onn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Yang Y, Xu B, Shen F, et al. Operation-aware Neural Networks for User Response Prediction[J]. arXiv
preprint arXiv:1904.12579, 2019. https://arxiv.org/pdf/1904.12579

deepctr.models.onn.ONN(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_embedding=1e-05, l2_reg_linear=1e-05, l2_reg_dnn=0,
dnn_dropout=0, seed=1024, use_bn=True, reduce_sum=False,
task=’binary’)

Instantiates the Operation-aware Neural Networks architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_linear – float. L2 regularizer strength applied to linear part.

2.6. DeepCTR Models API 75

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• l2_reg_dnn – float . L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• use_bn – bool,whether use bn after ffm out or not

• reduce_sum – bool,whether apply reduce_sum on cross vector

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.19 deepctr.models.fgcnn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Liu B, Tang R, Chen Y, et al. Feature Generation by Convolutional Neural Network for Click-Through
Rate Prediction[J]. arXiv preprint arXiv:1904.04447, 2019. (https://arxiv.org/pdf/1904.04447)

deepctr.models.fgcnn.FGCNN(linear_feature_columns, dnn_feature_columns,
conv_kernel_width=(7, 7, 7, 7), conv_filters=(14, 16, 18,
20), new_maps=(3, 3, 3, 3), pooling_width=(2, 2, 2, 2),
dnn_hidden_units=(256, 128, 64), l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, l2_reg_dnn=0, dnn_dropout=0,
seed=1024, task=’binary’)

Instantiates the Feature Generation by Convolutional Neural Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• conv_kernel_width – list,list of positive integer or empty list,the width of filter in each
conv layer.

• conv_filters – list,list of positive integer or empty list,the number of filters in each
conv layer.

• new_maps – list, list of positive integer or empty list, the feature maps of generated fea-
tures.

• pooling_width – list, list of positive integer or empty list,the width of pooling layer.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net.

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

76 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

2.6.20 deepctr.models.fibinet module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction
for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.

deepctr.models.fibinet.FiBiNET(linear_feature_columns, dnn_feature_columns, bi-
linear_type=’interaction’, reduction_ratio=3,
dnn_hidden_units=(256, 128, 64), l2_reg_linear=1e-
05, l2_reg_embedding=1e-05, l2_reg_dnn=0, seed=1024,
dnn_dropout=0, dnn_activation=’relu’, task=’binary’)

Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• bilinear_type – str,bilinear function type used in Bilinear Interaction Layer,can be
'all' , 'each' or 'interaction'

• reduction_ratio – integer in [1,inf), reduction ratio used in SENET Layer

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to wide part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.21 deepctr.models.flen module

Author: Tingyi Tan, 5636374@qq.com

Reference: [1] Chen W, Zhan L, Ci Y, Lin C. FLEN: Leveraging Field for Scalable CTR Prediction . arXiv preprint
arXiv:1911.04690, 2019.(https://arxiv.org/pdf/1911.04690)

deepctr.models.flen.FLEN(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-05, l2_reg_embedding=1e-05,
l2_reg_dnn=0, seed=1024, dnn_dropout=0.0, dnn_activation=’relu’,
dnn_use_bn=False, task=’binary’)

Instantiates the FLEN Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

2.6. DeepCTR Models API 77

mailto:weichenswc@163.com
mailto:5636374@qq.com

DeepCTR Documentation, Release 0.9.3

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.22 deepctr.models.ifm module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Yu Y, Wang Z, Yuan B. An Input-aware Factorization Machine for Sparse Prediction[C]//IJCAI. 2019:
1466-1472. (https://www.ijcai.org/Proceedings/2019/0203.pdf)

deepctr.models.ifm.IFM(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-05, l2_reg_embedding=1e-05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’, dnn_use_bn=False,
task=’binary’)

Instantiates the IFM Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

78 Chapter 2. DisscussionGroup

mailto:zanshuxun@aliyun.com
https://www.ijcai.org/Proceedings/2019/0203.pdf

DeepCTR Documentation, Release 0.9.3

2.6.23 deepctr.models.difm module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Lu W, Yu Y, Chang Y, et al. A Dual Input-aware Factorization Machine for CTR Prediction[C]
//IJCAI. 2020: 3139-3145.(https://www.ijcai.org/Proceedings/2020/0434.pdf)

deepctr.models.difm.DIFM(linear_feature_columns, dnn_feature_columns, att_embedding_size=8,
att_head_num=8, att_res=True, dnn_hidden_units=(256, 128, 64),
l2_reg_linear=1e-05, l2_reg_embedding=1e-05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’, dnn_use_bn=False,
task=’binary’)

Instantiates the DIFM Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• att_embedding_size – integer, the embedding size in multi-head self-attention net-
work.

• att_head_num – int. The head number in multi-head self-attention network.

• att_res – bool. Whether or not use standard residual connections before output.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.24 deepctr.models.deepfefm module

Author: Harshit Pande

Reference: [1] Field-Embedded Factorization Machines for Click-through Rate Prediction] (https://arxiv.org/pdf/
2009.09931.pdf)

this file also supports all the possible Ablation studies for reproducibility

2.6. DeepCTR Models API 79

mailto:zanshuxun@aliyun.com
https://www.ijcai.org/Proceedings/2020/0434.pdf
https://arxiv.org/pdf/2009.09931.pdf
https://arxiv.org/pdf/2009.09931.pdf

DeepCTR Documentation, Release 0.9.3

deepctr.models.deepfefm.DeepFEFM(linear_feature_columns, dnn_feature_columns,
use_fefm=True, dnn_hidden_units=(256, 128, 64),
l2_reg_linear=1e-05, l2_reg_embedding_feat=1e-05,
l2_reg_embedding_field=1e-05, l2_reg_dnn=0, seed=1024,
dnn_dropout=0.0, exclude_feature_embed_in_dnn=False,
use_linear=True, use_fefm_embed_in_dnn=True,
dnn_activation=’relu’, dnn_use_bn=False, task=’binary’)

Instantiates the DeepFEFM Network architecture or the shallow FEFM architecture (Ablation studies supported)

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• fm_group – list, group_name of features that will be used to do feature interactions.

• use_fefm – bool,use FEFM logit or not (doesn’t effect FEFM embeddings in DNN, con-
trols only the use of final FEFM logit)

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding_feat – float. L2 regularizer strength applied to embedding vector
of features

• l2_reg_embedding_field – float, L2 regularizer to field embeddings

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• exclude_feature_embed_in_dnn – bool, used in ablation studies for removing fea-
ture embeddings in DNN

• use_linear – bool, used in ablation studies

• use_fefm_embed_in_dnn – bool, True if FEFM interaction embeddings are to be used
in FEFM (set False for Ablation)

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

2.6.25 deepctr.models.multitask.sharedbottom module

Author: Mincai Lai, laimc@shanghaitech.edu.cn

Weichen Shen, weichenswc@163.com

Reference: [1] Ruder S. An overview of multi-task learning in deep neural networks[J]. arXiv preprint
arXiv:1706.05098, 2017.(https://arxiv.org/pdf/1706.05098.pdf)

80 Chapter 2. DisscussionGroup

mailto:laimc@shanghaitech.edu.cn
mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

deepctr.models.multitask.sharedbottom.SharedBottom(dnn_feature_columns, bot-
tom_dnn_hidden_units=(256,
128),
tower_dnn_hidden_units=(64,
), l2_reg_embedding=1e-
05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0,
dnn_activation=’relu’,
dnn_use_bn=False,
task_types=(’binary’, ’binary’),
task_names=(’ctr’, ’ctcvr’))

Instantiates the SharedBottom multi-task learning Network architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• bottom_dnn_hidden_units – list,list of positive integer or empty list, the layer num-
ber and units in each layer of shared bottom DNN.

• tower_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task_types – list of str, indicating the loss of each tasks, "binary" for binary logloss
or "regression" for regression loss. e.g. [‘binary’, ‘regression’]

• task_names – list of str, indicating the predict target of each tasks

Returns A Keras model instance.

2.6.26 deepctr.models.multitask.esmm module

Author: Mincai Lai, laimc@shanghaitech.edu.cn

Weichen Shen, weichenswc@163.com

Reference: [1] Ma X, Zhao L, Huang G, et al. Entire space multi-task model: An effective approach for estimating
post-click conversion rate[C]//The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 2018.(https://arxiv.org/abs/1804.07931)

deepctr.models.multitask.esmm.ESMM(dnn_feature_columns, tower_dnn_hidden_units=(256,
128, 64), l2_reg_embedding=1e-05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0, dnn_activation=’relu’,
dnn_use_bn=False, task_types=(’binary’, ’binary’),
task_names=(’ctr’, ’ctcvr’))

Instantiates the Entire Space Multi-Task Model architecture.

Parameters

2.6. DeepCTR Models API 81

mailto:laimc@shanghaitech.edu.cn
mailto:weichenswc@163.com
https://arxiv.org/abs/1804.07931

DeepCTR Documentation, Release 0.9.3

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• tower_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of task DNN.

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector.

• l2_reg_dnn – float. L2 regularizer strength applied to DNN.

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task_types – str, indicating the loss of each tasks, "binary" for binary logloss or
"regression" for regression loss.

• task_names – list of str, indicating the predict target of each tasks. default value is [‘ctr’,
‘ctcvr’]

Returns A Keras model instance.

2.6.27 deepctr.models.multitask.mmoe module

Author: Mincai Lai, laimc@shanghaitech.edu.cn

Weichen Shen, weichenswc@163.com

Reference: [1] Ma J, Zhao Z, Yi X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-
of-experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2018.(https://dl.acm.org/doi/abs/10.1145/3219819.3220007)

deepctr.models.multitask.mmoe.MMOE(dnn_feature_columns, num_experts=3,
expert_dnn_hidden_units=(256, 128),
tower_dnn_hidden_units=(64,),
gate_dnn_hidden_units=(), l2_reg_embedding=1e-
05, l2_reg_dnn=0, seed=1024, dnn_dropout=0,
dnn_activation=’relu’, dnn_use_bn=False,
task_types=(’binary’, ’binary’), task_names=(’ctr’,
’ctcvr’))

Instantiates the Multi-gate Mixture-of-Experts multi-task learning architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• num_experts – integer, number of experts.

• expert_dnn_hidden_units – list,list of positive integer or empty list, the layer num-
ber and units in each layer of expert DNN.

• tower_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

• gate_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of gate DNN.

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

82 Chapter 2. DisscussionGroup

mailto:laimc@shanghaitech.edu.cn
mailto:weichenswc@163.com
https://dl.acm.org/doi/abs/10.1145/3219819.3220007

DeepCTR Documentation, Release 0.9.3

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task_types – list of str, indicating the loss of each tasks, "binary" for binary logloss,
"regression" for regression loss. e.g. [‘binary’, ‘regression’]

• task_names – list of str, indicating the predict target of each tasks

Returns a Keras model instance

2.6.28 deepctr.models.multitask.ple module

Author: Mincai Lai, laimc@shanghaitech.edu.cn

Weichen Shen, weichenswc@163.com

Reference: [1] Tang H, Liu J, Zhao M, et al. Progressive layered extraction (ple): A novel multi-task learning
(mtl) model for personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems.
2020.(https://dl.acm.org/doi/10.1145/3383313.3412236)

deepctr.models.multitask.ple.PLE(dnn_feature_columns, shared_expert_num=1,
specific_expert_num=1, num_levels=2,
expert_dnn_hidden_units=(256,),
tower_dnn_hidden_units=(64,), gate_dnn_hidden_units=(),
l2_reg_embedding=1e-05, l2_reg_dnn=0, seed=1024,
dnn_dropout=0, dnn_activation=’relu’, dnn_use_bn=False,
task_types=(’binary’, ’binary’), task_names=(’ctr’, ’ctcvr’))

Instantiates the multi level of Customized Gate Control of Progressive Layered Extraction architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• shared_expert_num – integer, number of task-shared experts.

• specific_expert_num – integer, number of task-specific experts.

• num_levels – integer, number of CGC levels.

• expert_dnn_hidden_units – list,list of positive integer or empty list, the layer num-
ber and units in each layer of expert DNN.

• tower_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

• gate_dnn_hidden_units – list,list of positive integer or empty list, the layer number
and units in each layer of gate DNN.

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector.

• l2_reg_dnn – float. L2 regularizer strength applied to DNN.

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN.

2.6. DeepCTR Models API 83

mailto:laimc@shanghaitech.edu.cn
mailto:weichenswc@163.com
https://dl.acm.org/doi/10.1145/3383313.3412236

DeepCTR Documentation, Release 0.9.3

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN.

• task_types – list of str, indicating the loss of each tasks, "binary" for binary logloss,
"regression" for regression loss. e.g. [‘binary’, ‘regression’]

• task_names – list of str, indicating the predict target of each tasks

Returns a Keras model instance.

2.6.29 deepctr.models.edcn module

Author: Yi He, heyi_jack@163.com

Reference: [1] Chen, B., Wang, Y., Liu, et al. Enhancing Explicit and Implicit Feature Interactions via Information
Sharing for Parallel Deep CTR Models. CIKM, 2021, October (https://dlp-kdd.github.io/assets/pdf/DLP-KDD_
2021_paper_12.pdf)

deepctr.models.edcn.EDCN(linear_feature_columns, dnn_feature_columns, cross_num=2,
cross_parameterization=’vector’, bridge_type=’concatenation’, tau=1.0,
l2_reg_linear=1e-05, l2_reg_embedding=1e-05, l2_reg_cross=1e-
05, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_use_bn=False,
dnn_activation=’relu’, task=’binary’)

Instantiates the Enhanced Deep&Cross Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• cross_num – positive integet,cross layer number

• cross_parameterization – str, "vector" or "matrix", how to parameterize the
cross network.

• bridge_type – The type of bridge interaction, one of "pointwise_addition",
"hadamard_product", "concatenation" , "attention_pooling"

• tau – Positive float, the temperature coefficient to control distribution of field-wise gating
unit

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_cross – float. L2 regularizer strength applied to cross net

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not DNN

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

Returns A Keras model instance.

84 Chapter 2. DisscussionGroup

mailto:heyi_jack@163.com
https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf
https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf

DeepCTR Documentation, Release 0.9.3

2.7 DeepCTR Estimators API

2.7.1 deepctr.estimator.models.ccpm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Liu Q, Yu F, Wu S, et al. A convolutional click prediction model[C]//Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM, 2015: 1743-1746. (http:
//ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf)

deepctr.estimator.models.ccpm.CCPMEstimator(linear_feature_columns,
dnn_feature_columns,
conv_kernel_width=(6, 5), conv_filters=(4,
4), dnn_hidden_units=(128,
64), l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, l2_reg_dnn=0,
dnn_dropout=0, seed=1024,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Convolutional Click Prediction Model architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• conv_kernel_width – list,list of positive integer or empty list,the width of filter in each
conv layer.

• conv_filters – list,list of positive integer or empty list,the number of filters in each
conv layer.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN.

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• init_std – float,to use as the initialize std of embedding vector

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

2.7. DeepCTR Estimators API 85

mailto:weichenswc@163.com
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf

DeepCTR Documentation, Release 0.9.3

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.2 deepctr.estimator.models.fnn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]//European conference on
information retrieval. Springer, Cham, 2016: 45-57.(https://arxiv.org/pdf/1601.02376.pdf)

deepctr.estimator.models.fnn.FNNEstimator(linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128, 64),
l2_reg_embedding=1e-05, l2_reg_linear=1e-
05, l2_reg_dnn=0, seed=1024,
dnn_dropout=0, dnn_activation=’relu’,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Factorization-supported Neural Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_linear – float. L2 regularizer strength applied to linear weight

• l2_reg_dnn – float . L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

86 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com
https://arxiv.org/pdf/1601.02376.pdf

DeepCTR Documentation, Release 0.9.3

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.3 deepctr.estimator.models.pnn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//Data
Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.(https://arxiv.org/pdf/
1611.00144.pdf)

deepctr.estimator.models.pnn.PNNEstimator(dnn_feature_columns, dnn_hidden_units=(256,
128, 64), l2_reg_embedding=1e-05,
l2_reg_dnn=0, seed=1024, dnn_dropout=0,
dnn_activation=’relu’, use_inner=True,
use_outter=False, kernel_type=’mat’,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Product-based Neural Network architecture.

Parameters

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float . L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• use_inner – bool,whether use inner-product or not.

• use_outter – bool,whether use outter-product or not.

• kernel_type – str,kernel_type used in outter-product,can be 'mat' , 'vec' or 'num'

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

2.7. DeepCTR Estimators API 87

mailto:weichenswc@163.com
https://arxiv.org/pdf/1611.00144.pdf
https://arxiv.org/pdf/1611.00144.pdf

DeepCTR Documentation, Release 0.9.3

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.4 deepctr.estimator.models.wdl module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.(https://arxiv.org/pdf/
1606.07792.pdf)

deepctr.estimator.models.wdl.WDLEstimator(linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128, 64),
l2_reg_linear=1e-05, l2_reg_embedding=1e-
05, l2_reg_dnn=0, seed=1024,
dnn_dropout=0, dnn_activation=’relu’,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Wide&Deep Learning architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to wide part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

88 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com
https://arxiv.org/pdf/1606.07792.pdf
https://arxiv.org/pdf/1606.07792.pdf

DeepCTR Documentation, Release 0.9.3

Returns A Tensorflow Estimator instance.

2.7.5 deepctr.estimator.models.deepfm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr predic-
tion[J]. arXiv preprint arXiv:1703.04247, 2017.(https://arxiv.org/abs/1703.04247)

deepctr.estimator.models.deepfm.DeepFMEstimator(linear_feature_columns,
dnn_feature_columns,
dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-
05, l2_reg_embedding=1e-
05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0,
dnn_activation=’relu’,
dnn_use_bn=False, task=’binary’,
model_dir=None, config=None,
linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the DeepFM Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• fm_group – list, group_name of features that will be used to do feature interactions.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

2.7. DeepCTR Estimators API 89

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.6 deepctr.estimator.models.nfm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of
the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
2017: 355-364. (https://arxiv.org/abs/1708.05027)

deepctr.estimator.models.nfm.NFMEstimator(linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128, 64),
l2_reg_embedding=1e-05, l2_reg_linear=1e-
05, l2_reg_dnn=0, seed=1024, bi_dropout=0,
dnn_dropout=0, dnn_activation=’relu’,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Neural Factorization Machine architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_linear – float. L2 regularizer strength applied to linear part.

• l2_reg_dnn – float . L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• biout_dropout – When not None, the probability we will drop out the output of BiIn-
teractionPooling Layer.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in deep net

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

90 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com
https://arxiv.org/abs/1708.05027

DeepCTR Documentation, Release 0.9.3

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.7 deepctr.estimator.models.afm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017. (https://arxiv.org/abs/1708.04617)

deepctr.estimator.models.afm.AFMEstimator(linear_feature_columns, dnn_feature_columns,
use_attention=True, attention_factor=8,
l2_reg_linear=1e-05, l2_reg_embedding=1e-
05, l2_reg_att=1e-05, afm_dropout=0,
seed=1024, task=’binary’, model_dir=None,
config=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Attentional Factorization Machine architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• use_attention – bool,whether use attention or not,if set to False.it is the same as
standard Factorization Machine

• attention_factor – positive integer,units in attention net

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_att – float. L2 regularizer strength applied to attention net

• afm_dropout – float in [0,1), Fraction of the attention net output units to dropout.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

2.7. DeepCTR Estimators API 91

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.8 deepctr.estimator.models.dcn module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the
ADKDD’17. ACM, 2017: 12. (https://arxiv.org/abs/1708.05123)

deepctr.estimator.models.dcn.DCNEstimator(linear_feature_columns, dnn_feature_columns,
cross_num=2, dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-05,
l2_reg_embedding=1e-05, l2_reg_cross=1e-05,
l2_reg_dnn=0, seed=1024, dnn_dropout=0,
dnn_use_bn=False, dnn_activation=’relu’,
task=’binary’, model_dir=None, con-
fig=None, linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the Deep&Cross Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• cross_num – positive integet,cross layer number

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_cross – float. L2 regularizer strength applied to cross net

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not DNN

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

92 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com
https://arxiv.org/abs/1708.05123

DeepCTR Documentation, Release 0.9.3

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.9 deepctr.estimator.models.xdeepfm module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for
Recommender Systems[J]. arXiv preprint arXiv:1803.05170, 2018.(https://arxiv.org/pdf/1803.05170.pdf)

deepctr.estimator.models.xdeepfm.xDeepFMEstimator(linear_feature_columns,
dnn_feature_columns,
dnn_hidden_units=(256, 128,
64), cin_layer_size=(128,
128), cin_split_half=True,
cin_activation=’relu’,
l2_reg_linear=1e-05,
l2_reg_embedding=1e-05,
l2_reg_dnn=0, l2_reg_cin=0,
seed=1024, dnn_dropout=0,
dnn_activation=’relu’,
dnn_use_bn=False, task=’binary’,
model_dir=None, config=None,
linear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the xDeepFM architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of deep net

• cin_layer_size – list,list of positive integer or empty list, the feature maps in each
hidden layer of Compressed Interaction Network

• cin_split_half – bool.if set to True, half of the feature maps in each hidden will
connect to output unit

• cin_activation – activation function used on feature maps

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – L2 regularizer strength applied to embedding vector

• l2_reg_dnn – L2 regularizer strength applied to deep net

• l2_reg_cin – L2 regularizer strength applied to CIN.

• seed – integer ,to use as random seed.

2.7. DeepCTR Estimators API 93

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.10 deepctr.estimator.models.autoint module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive
Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.(https://arxiv.org/abs/1810.11921)

deepctr.estimator.models.autoint.AutoIntEstimator(linear_feature_columns,
dnn_feature_columns,
att_layer_num=3,
att_embedding_size=8,
att_head_num=2, att_res=True,
dnn_hidden_units=(256, 128,
64), dnn_activation=’relu’,
l2_reg_linear=1e-05,
l2_reg_embedding=1e-05,
l2_reg_dnn=0, dnn_use_bn=False,
dnn_dropout=0, seed=1024,
task=’binary’, model_dir=None,
config=None, lin-
ear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

Instantiates the AutoInt Network architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• att_layer_num – int.The InteractingLayer number to be used.

• att_embedding_size – int.The embedding size in multi-head self-attention network.

94 Chapter 2. DisscussionGroup

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

• att_head_num – int.The head number in multi-head self-attention network.

• att_res – bool.Whether or not use standard residual connections before output.

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• dnn_activation – Activation function to use in DNN

• l2_reg_linear – float. L2 regularizer strength applied to linear part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• dnn_use_bn – bool. Whether use BatchNormalization before activation or not in DNN

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• seed – integer ,to use as random seed.

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.7.11 deepctr.estimator.models.fibinet module

Author: Weichen Shen, weichenswc@163.com

Reference: [1] Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction
for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.

deepctr.estimator.models.fibinet.FiBiNETEstimator(linear_feature_columns,
dnn_feature_columns, bi-
linear_type=’interaction’,
reduction_ratio=3,
dnn_hidden_units=(256,
128, 64), l2_reg_linear=1e-
05, l2_reg_embedding=1e-
05, l2_reg_dnn=0,
seed=1024, dnn_dropout=0,
dnn_activation=’relu’,
task=’binary’, model_dir=None,
config=None, lin-
ear_optimizer=’Ftrl’,
dnn_optimizer=’Adagrad’, train-
ing_chief_hooks=None)

2.7. DeepCTR Estimators API 95

mailto:weichenswc@163.com

DeepCTR Documentation, Release 0.9.3

Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.

Parameters

• linear_feature_columns – An iterable containing all the features used by linear part
of the model.

• dnn_feature_columns – An iterable containing all the features used by deep part of
the model.

• bilinear_type – str,bilinear function type used in Bilinear Interaction Layer,can be
'all' , 'each' or 'interaction'

• reduction_ratio – integer in [1,inf), reduction ratio used in SENET Layer

• dnn_hidden_units – list,list of positive integer or empty list, the layer number and
units in each layer of DNN

• l2_reg_linear – float. L2 regularizer strength applied to wide part

• l2_reg_embedding – float. L2 regularizer strength applied to embedding vector

• l2_reg_dnn – float. L2 regularizer strength applied to DNN

• seed – integer ,to use as random seed.

• dnn_dropout – float in [0,1), the probability we will drop out a given DNN coordinate.

• dnn_activation – Activation function to use in DNN

• task – str, "binary" for binary logloss or "regression" for regression loss

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• config – tf.RunConfig object to configure the runtime settings.

• linear_optimizer – An instance of tf.Optimizer used to apply gradients to the linear
part of the model. Defaults to FTRL optimizer.

• dnn_optimizer – An instance of tf.Optimizer used to apply gradients to the deep part of
the model. Defaults to Adagrad optimizer.

• training_chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the
chief worker during training.

Returns A Tensorflow Estimator instance.

2.8 DeepCTR Layers API

2.8.1 deepctr.layers.core module

Author: Weichen Shen,weichenswc@163.com

class deepctr.layers.core.DNN(hidden_units, activation=’relu’, l2_reg=0, dropout_rate=0,
use_bn=False, output_activation=None, seed=1024, **kwargs)

The Multi Layer Percetron

Input shape

• nD tensor with shape: (batch_size, ..., input_dim). The most common situation would
be a 2D input with shape (batch_size, input_dim).

96 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

Output shape

• nD tensor with shape: (batch_size, ..., hidden_size[-1]). For instance, for a 2D
input with shape (batch_size, input_dim), the output would have shape (batch_size,
hidden_size[-1]).

Arguments

• hidden_units:list of positive integer, the layer number and units in each layer.

• activation: Activation function to use.

• l2_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix.

• dropout_rate: float in [0,1). Fraction of the units to dropout.

• use_bn: bool. Whether use BatchNormalization before activation or not.

• output_activation: Activation function to use in the last layer.If None,it will be same as
activation.

• seed: A Python integer to use as random seed.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

2.8. DeepCTR Layers API 97

DeepCTR Documentation, Release 0.9.3

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.core.LocalActivationUnit(hidden_units=(64, 32), acti-
vation=’sigmoid’, l2_reg=0,
dropout_rate=0, use_bn=False,
seed=1024, **kwargs)

The LocalActivationUnit used in DIN with which the representation of user interests varies adaptively given
different candidate items.

Input shape

• A list of two 3D tensor with shape: (batch_size, 1, embedding_size) and
(batch_size, T, embedding_size)

Output shape

• 3D tensor with shape: (batch_size, T, 1).

Arguments

• hidden_units:list of positive integer, the attention net layer number and units in each layer.

• activation: Activation function to use in attention net.

98 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• l2_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix
of attention net.

• dropout_rate: float in [0,1). Fraction of the units to dropout in attention net.

• use_bn: bool. Whether use BatchNormalization before activation or not in attention net.

• seed: A Python integer to use as random seed.

References

• [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate predic-
tion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2018: 1059-1068.](https://arxiv.org/pdf/1706.06978.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

2.8. DeepCTR Layers API 99

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR Documentation, Release 0.9.3

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.core.PredictionLayer(task=’binary’, use_bias=True, **kwargs)

Arguments

• task: str, "binary" for binary logloss or "regression" for regression loss

• use_bias: bool.Whether add bias term or not.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

100 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

2.8. DeepCTR Layers API 101

DeepCTR Documentation, Release 0.9.3

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.core.RegulationModule(tau=1.0, **kwargs)
Regulation module used in EDCN.

Input shape

• 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size,field_size * embedding_size).

Arguments

• tau : Positive float, the temperature coefficient to control

distribution of field-wise gating unit.

References

• [Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR
Models.](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

102 Chapter 2. DisscussionGroup

https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf

DeepCTR Documentation, Release 0.9.3

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

2.8.2 deepctr.layers.interaction module

Authors: Weichen Shen,weichenswc@163.com, Harshit Pande, Yi He, heyi_jack@163.com

class deepctr.layers.interaction.AFMLayer(attention_factor=4, l2_reg_w=0,
dropout_rate=0, seed=1024, **kwargs)

Attentonal Factorization Machine models pairwise (order-2) feature interactions without linear term and bias.

Input shape

• A list of 3D tensor with shape: (batch_size,1,embedding_size).

Output shape

• 2D tensor with shape: (batch_size, 1).

2.8. DeepCTR Layers API 103

mailto:heyi_jack@163.com

DeepCTR Documentation, Release 0.9.3

Arguments

• attention_factor : Positive integer, dimensionality of the

attention network output space.

• l2_reg_w : float between 0 and 1. L2 regularizer strength

applied to attention network.

• dropout_rate : float between in [0,1). Fraction of the attention net output units to dropout.

• seed : A Python integer to use as random seed.

References

• [Attentional Factorization Machines : Learning the Weight of Feature

Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

104 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1708.04617.pdf

DeepCTR Documentation, Release 0.9.3

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.BiInteractionPooling(**kwargs)
Bi-Interaction Layer used in Neural FM,compress the pairwise element-wise product of features into one single
vector.

Input shape

• A 3D tensor with shape:(batch_size,field_size,embedding_size).

Output shape

• 3D tensor with shape: (batch_size,1,embedding_size).

References

• [He X, Chua T S. Neural factorization machines for sparse predictive analyt-
ics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.
05027)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

2.8. DeepCTR Layers API 105

http://arxiv.org/abs/1708.05027
http://arxiv.org/abs/1708.05027

DeepCTR Documentation, Release 0.9.3

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

106 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

class deepctr.layers.interaction.BilinearInteraction(bilinear_type=’interaction’,
seed=1024, **kwargs)

BilinearInteraction Layer used in FiBiNET.

Input shape

• A list of 3D tensor with shape: (batch_size,1,embedding_size). Its length is
filed_size.

Output shape

• 3D tensor with shape: (batch_size,filed_size*(filed_size-1)/2,
embedding_size).

Arguments

• bilinear_type : String, types of bilinear functions used in this layer.

• seed : A Python integer to use as random seed.

References

• [FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate
Prediction](https://arxiv.org/pdf/1905.09433.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

2.8. DeepCTR Layers API 107

https://arxiv.org/pdf/1905.09433.pdf

DeepCTR Documentation, Release 0.9.3

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.BridgeModule(bridge_type=’hadamard_product’, acti-
vation=’relu’, **kwargs)

Bridge Module used in EDCN

Input shape

• A list of two 2D tensor with shape: (batch_size, units).

Output shape

• 2D tensor with shape: (batch_size, units).

Arguments

• bridge_type: The type of bridge interaction, one of ‘pointwise_addition’, ‘hadamard_product’, ‘con-
catenation’, ‘attention_pooling’

108 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• activation: Activation function to use.

References

• [Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep
CTR Models.](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

2.8. DeepCTR Layers API 109

https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf

DeepCTR Documentation, Release 0.9.3

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.CIN(layer_size=(128, 128), activation=’relu’,
split_half=True, l2_reg=1e-05, seed=1024, **kwargs)

Compressed Interaction Network used in xDeepFM.This implemention is adapted from code that the author of
the paper published on https://github.com/Leavingseason/xDeepFM.

Input shape

• 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size, featuremap_num) featuremap_num
= sum(self.layer_size[:-1]) // 2 + self.layer_size[-1] if
split_half=True,else sum(layer_size) .

Arguments

• layer_size : list of int.Feature maps in each layer.

• activation : activation function used on feature maps.

• split_half : bool.if set to False, half of the feature maps in each hidden will connect to
output unit.

• seed : A Python integer to use as random seed.

References

• [Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Fea-
ture Interactions for Recommender Systems[J]. arXiv preprint arXiv:1803.05170, 2018.]
(https://arxiv.org/pdf/1803.05170.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

110 Chapter 2. DisscussionGroup

https://github.com/Leavingseason/xDeepFM

DeepCTR Documentation, Release 0.9.3

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

2.8. DeepCTR Layers API 111

DeepCTR Documentation, Release 0.9.3

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.CrossNet(layer_num=2, parameterization=’vector’,
l2_reg=0, seed=1024, **kwargs)

The Cross Network part of Deep&Cross Network model, which leans both low and high degree cross feature.

Input shape

• 2D tensor with shape: (batch_size, units).

Output shape

• 2D tensor with shape: (batch_size, units).

Arguments

• layer_num: Positive integer, the cross layer number

• l2_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix

• parameterization: string, "vector" or "matrix" , way to parameterize the cross net-
work.

• seed: A Python integer to use as random seed.

References

• [Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings
of the ADKDD’17. ACM, 2017: 12.](https://arxiv.org/abs/1708.05123)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

112 Chapter 2. DisscussionGroup

https://arxiv.org/abs/1708.05123

DeepCTR Documentation, Release 0.9.3

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

2.8. DeepCTR Layers API 113

DeepCTR Documentation, Release 0.9.3

class deepctr.layers.interaction.CrossNetMix(low_rank=32, num_experts=4,
layer_num=2, l2_reg=0, seed=1024,
**kwargs)

The Cross Network part of DCN-Mix model, which improves DCN-M by: 1 add MOE to learn feature interac-
tions in different subspaces 2 add nonlinear transformations in low-dimensional space

Input shape

• 2D tensor with shape: (batch_size, units).

Output shape

• 2D tensor with shape: (batch_size, units).

Arguments

• low_rank : Positive integer, dimensionality of low-rank sapce.

• num_experts : Positive integer, number of experts.

• layer_num: Positive integer, the cross layer number

• l2_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix

• seed: A Python integer to use as random seed.

References

• [Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross
Learning in Web-scale Learning to Rank Systems[J]. 2020.](https://arxiv.org/abs/2008.13535)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

114 Chapter 2. DisscussionGroup

https://arxiv.org/abs/2008.13535

DeepCTR Documentation, Release 0.9.3

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.FEFMLayer(regularizer, **kwargs)
Field-Embedded Factorization Machines

Input shape

• 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size, (num_fields * (num_fields-1))/2) # con-
catenated FEFM interaction embeddings

Arguments

2.8. DeepCTR Layers API 115

DeepCTR Documentation, Release 0.9.3

• regularizer : L2 regularizer weight for the field pair matrix embeddings parameters of FEFM

References

• [Field-Embedded Factorization Machines for Click-through Rate Prediction]

https://arxiv.org/pdf/2009.09931.pdf

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

116 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/2009.09931.pdf

DeepCTR Documentation, Release 0.9.3

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.FGCNNLayer(filters=(14, 16), kernel_width=(7, 7),
new_maps=(3, 3), pooling_width=(2, 2),
**kwargs)

Feature Generation Layer used in FGCNN,including Convolution,MaxPooling and Recombination.

Input shape

• A 3D tensor with shape:(batch_size,field_size,embedding_size).

Output shape

• 3D tensor with shape: (batch_size,new_feture_num,embedding_size).

References

• [Liu B, Tang R, Chen Y, et al. Feature Generation by Convolutional Neu-
ral Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1904.04447,
2019.](https://arxiv.org/pdf/1904.04447)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

2.8. DeepCTR Layers API 117

DeepCTR Documentation, Release 0.9.3

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

118 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.FM(**kwargs)
Factorization Machine models pairwise (order-2) feature interactions without linear term and bias.

Input shape

• 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size, 1).

References

• [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

2.8. DeepCTR Layers API 119

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

DeepCTR Documentation, Release 0.9.3

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

class deepctr.layers.interaction.FieldWiseBiInteraction(use_bias=True,
seed=1024, **kwargs)

Field-Wise Bi-Interaction Layer used in FLEN,compress the pairwise element-wise product of features into one
single vector.

Input shape

• A list of 3D tensor with shape:(batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size,embedding_size).

Arguments

• use_bias : Boolean, if use bias.

• seed : A Python integer to use as random seed.

References

• [FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

120 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1911.04690

DeepCTR Documentation, Release 0.9.3

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

2.8. DeepCTR Layers API 121

DeepCTR Documentation, Release 0.9.3

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.FwFMLayer(num_fields=4, regularizer=1e-06, **kwargs)
Field-weighted Factorization Machines

Input shape

• 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 2D tensor with shape: (batch_size, 1).

Arguments

• num_fields : integer for number of fields

• regularizer : L2 regularizer weight for the field strength parameters of FwFM

References

• [Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising]

https://arxiv.org/pdf/1806.03514.pdf

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

122 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1806.03514.pdf

DeepCTR Documentation, Release 0.9.3

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.InnerProductLayer(reduce_sum=True, **kwargs)
InnerProduct Layer used in PNN that compute the element-wise product or inner product between feature vec-
tors.

Input shape

• a list of 3D tensor with shape: (batch_size,1,embedding_size).

Output shape

• 3D tensor with shape: (batch_size, N*(N-1)/2 ,1) if use reduce_sum. or 3D
tensor with shape: (batch_size, N*(N-1)/2, embedding_size) if not use
reduce_sum.

Arguments

• reduce_sum: bool. Whether return inner product or element-wise product

References

2.8. DeepCTR Layers API 123

DeepCTR Documentation, Release 0.9.3

• [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response predic-
tion[C]//Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016:
1149-1154.](https://arxiv.org/pdf/1611.00144.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

124 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1611.00144.pdf

DeepCTR Documentation, Release 0.9.3

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.InteractingLayer(att_embedding_size=8,
head_num=2, use_res=True, scal-
ing=False, seed=1024, **kwargs)

A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention
mechanism.

Input shape

• A 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

• 3D tensor with shape:(batch_size,field_size,att_embedding_size *
head_num).

Arguments

• att_embedding_size: int.The embedding size in multi-head self-attention network.

• head_num: int.The head number in multi-head self-attention network.

• use_res: bool.Whether or not use standard residual connections before output.

• seed: A Python integer to use as random seed.

References

• [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive
Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

2.8. DeepCTR Layers API 125

DeepCTR Documentation, Release 0.9.3

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

126 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.OutterProductLayer(kernel_type=’mat’, seed=1024,
**kwargs)

OutterProduct Layer used in PNN.This implemention is adapted from code that the author of the paper published
on https://github.com/Atomu2014/product-nets.

Input shape

• A list of N 3D tensor with shape: (batch_size,1,embedding_size).

Output shape

• 2D tensor with shape:(batch_size,N*(N-1)/2).

Arguments

• kernel_type: str. The kernel weight matrix type to use,can be mat,vec or num

• seed: A Python integer to use as random seed.

References

• [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response predic-
tion[C]//Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016:
1149-1154.](https://arxiv.org/pdf/1611.00144.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

2.8. DeepCTR Layers API 127

https://github.com/Atomu2014/product-nets
https://arxiv.org/pdf/1611.00144.pdf

DeepCTR Documentation, Release 0.9.3

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.interaction.SENETLayer(reduction_ratio=3, seed=1024, **kwargs)
SENETLayer used in FiBiNET.

Input shape

• A list of 3D tensor with shape: (batch_size,1,embedding_size).

128 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

Output shape

• A list of 3D tensor with shape: (batch_size,1,embedding_size).

Arguments

• reduction_ratio : Positive integer, dimensionality of the

attention network output space.

• seed : A Python integer to use as random seed.

References

• [FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate
Prediction](https://arxiv.org/pdf/1905.09433.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

2.8. DeepCTR Layers API 129

https://arxiv.org/pdf/1905.09433.pdf

DeepCTR Documentation, Release 0.9.3

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask=None)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

2.8.3 deepctr.layers.activation module

Author: Weichen Shen,weichenswc@163.com

class deepctr.layers.activation.Dice(axis=-1, epsilon=1e-09, **kwargs)
The Data Adaptive Activation Function in DIN,which can be viewed as a generalization of PReLu and can
adaptively adjust the rectified point according to distribution of input data.

Input shape

• Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

130 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• Same shape as the input.

Arguments

• axis : Integer, the axis that should be used to compute data distribution (typically the features axis).

• epsilon : Small float added to variance to avoid dividing by zero.

References

• [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate predic-
tion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018: 1059-1068.](https://arxiv.org/pdf/1706.06978.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

2.8. DeepCTR Layers API 131

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR Documentation, Release 0.9.3

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

2.8.4 deepctr.layers.normalization module

Author: Weichen Shen,weichenswc@163.com

class deepctr.layers.normalization.LayerNormalization(axis=-1, eps=1e-09, cen-
ter=True, scale=True,
**kwargs)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

132 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

2.8. DeepCTR Layers API 133

DeepCTR Documentation, Release 0.9.3

2.8.5 deepctr.layers.sequence module

Author: Weichen Shen,weichenswc@163.com

class deepctr.layers.sequence.AttentionSequencePoolingLayer(att_hidden_units=(80,
40),
att_activation=’sigmoid’,
weight_normalization=False,
return_score=False,
sup-
ports_masking=False,
**kwargs)

The Attentional sequence pooling operation used in DIN.

Input shape

• A list of three tensor: [query,keys,keys_length]

• query is a 3D tensor with shape: (batch_size, 1, embedding_size)

• keys is a 3D tensor with shape: (batch_size, T, embedding_size)

• keys_length is a 2D tensor with shape: (batch_size, 1)

Output shape

• 3D tensor with shape: (batch_size, 1, embedding_size).

Arguments

• att_hidden_units:list of positive integer, the attention net layer number and units in each layer.

• att_activation: Activation function to use in attention net.

• weight_normalization: bool.Whether normalize the attention score of local activation unit.

• supports_masking:If True,the input need to support masking.

References

• [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate predic-
tion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018: 1059-1068.](https://arxiv.org/pdf/1706.06978.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, mask=None, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

134 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR Documentation, Release 0.9.3

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

2.8. DeepCTR Layers API 135

DeepCTR Documentation, Release 0.9.3

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.BiLSTM(units, layers=2, res_layers=0, dropout_rate=0.2,
merge_mode=’ave’, **kwargs)

A multiple layer Bidirectional Residual LSTM Layer.

Input shape

• 3D tensor with shape (batch_size, timesteps, input_dim).

Output shape

• 3D tensor with shape: (batch_size, timesteps, units).

Arguments

• units: Positive integer, dimensionality of the output space.

• layers:Positive integer, number of LSTM layers to stacked.

• res_layers: Positive integer, number of residual connection to used in last res_layers.

• dropout_rate: Float between 0 and 1. Fraction of the units to drop for the linear transformation of
the inputs.

• merge_mode: merge_mode: Mode by which outputs of the forward and backward RNNs will be
combined. One of { 'fw' , 'bw' , 'sum' , 'mul' , 'concat' , 'ave' , None }. If None, the
outputs will not be combined, they will be returned as a list.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, mask=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

136 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.BiasEncoding(sess_max_count, seed=1024, **kwargs)

2.8. DeepCTR Layers API 137

DeepCTR Documentation, Release 0.9.3

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, mask=None)

Parameters concated_embeds_value – None * field_size * embedding_size

Returns None*1

compute_mask(inputs, mask=None)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.DynamicGRU(num_units=None, gru_type=’GRU’, re-
turn_sequence=True, **kwargs)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

138 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(input_list)

Parameters concated_embeds_value – None * field_size * embedding_size

Returns None*1

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.KMaxPooling(k=1, axis=-1, **kwargs)
K Max pooling that selects the k biggest value along the specific axis.

Input shape

• nD tensor with shape: (batch_size, ..., input_dim).

Output shape

• nD tensor with shape: (batch_size, ..., output_dim).

Arguments

• k: positive integer, number of top elements to look for along the axis dimension.

• axis: positive integer, the dimension to look for elements.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

2.8. DeepCTR Layers API 139

DeepCTR Documentation, Release 0.9.3

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

140 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.PositionEncoding(pos_embedding_trainable=True,
zero_pad=False, scale=True,
**kwargs)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, mask=None)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

2.8. DeepCTR Layers API 141

DeepCTR Documentation, Release 0.9.3

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask=None)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.SequencePoolingLayer(mode=’mean’, sup-
ports_masking=False, **kwargs)

The SequencePoolingLayer is used to apply pooling operation(sum,mean,max) on variable-length sequence
feature/multi-value feature.

Input shape

• A list of two tensor [seq_value,seq_len]

• seq_value is a 3D tensor with shape: (batch_size, T, embedding_size)

• seq_len is a 2D tensor with shape : (batch_size, 1),indicate valid length of each sequence.

Output shape

• 3D tensor with shape: (batch_size, 1, embedding_size).

Arguments

• mode:str.Pooling operation to be used,can be sum,mean or max.

• supports_masking:If True,the input need to support masking.

142 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(seq_value_len_list, mask=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

2.8. DeepCTR Layers API 143

DeepCTR Documentation, Release 0.9.3

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.Transformer(att_embedding_size=1,
head_num=8, dropout_rate=0.0,
use_positional_encoding=True,
use_res=True, use_feed_forward=True,
use_layer_norm=False, blinding=True,
seed=1024, supports_masking=False, at-
tention_type=’scaled_dot_product’, out-
put_type=’mean’, **kwargs)

Simplified version of Transformer proposed in Attention is all you need

Input shape

• a list of two 3D tensor with shape (batch_size, timesteps, input_dim) if
supports_masking=True .

• a list of two 4 tensors, first two tensors with shape (batch_size, timesteps,
input_dim),last two tensors with shape (batch_size, 1) if supports_masking=False
.

Output shape

• 3D tensor with shape: (batch_size, 1, input_dim) if output_type='mean' or
output_type='sum' , else (batch_size, timesteps, input_dim) .

Arguments

• att_embedding_size: int.The embedding size in multi-head self-attention network.

• head_num: int.The head number in multi-head self-attention network.

• dropout_rate: float between 0 and 1. Fraction of the units to drop.

• use_positional_encoding: bool. Whether or not use positional_encoding

• use_res: bool. Whether or not use standard residual connections before output.

• use_feed_forward: bool. Whether or not use pointwise feed foward network.

144 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• use_layer_norm: bool. Whether or not use Layer Normalization.

• blinding: bool. Whether or not use blinding.

• seed: A Python integer to use as random seed.

• supports_masking:bool. Whether or not support masking.

• attention_type: str, Type of attention, the value must be one of { 'scaled_dot_product' ,
'cos' , 'ln' , 'additive' }.

• output_type: 'mean' , 'sum' or None. Whether or not use average/sum pooling for output.

References

• [Vaswani, Ashish, et al. “Attention is all you need.” Advances in Neural Information Processing
Systems. 2017.](https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf)

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(inputs, mask=None, training=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

2.8. DeepCTR Layers API 145

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

DeepCTR Documentation, Release 0.9.3

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask=None)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

class deepctr.layers.sequence.WeightedSequenceLayer(weight_normalization=True,
supports_masking=False,
**kwargs)

The WeightedSequenceLayer is used to apply weight score on variable-length sequence feature/multi-value
feature.

Input shape

• A list of two tensor [seq_value,seq_len,seq_weight]

• seq_value is a 3D tensor with shape: (batch_size, T, embedding_size)

• seq_len is a 2D tensor with shape : (batch_size, 1),indicate valid length of each sequence.

• seq_weight is a 3D tensor with shape: (batch_size, T, 1)

Output shape

146 Chapter 2. DisscussionGroup

DeepCTR Documentation, Release 0.9.3

• 3D tensor with shape: (batch_size, T, embedding_size).

Arguments

• weight_normalization: bool.Whether normalize the weight score before applying to sequence.

• supports_masking:If True,the input need to support masking.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Args:

input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a
list of inputs (one instance per input).

call(input_list, mask=None, **kwargs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Args:

inputs: Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is sub-
ject to special rules: - inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

• NumPy array or Python scalar values in inputs get cast as tensors.

• Keras mask metadata is only collected from inputs.

• Layers are built (build(input_shape) method) using shape info from inputs only.

• input_spec compatibility is only checked against inputs.

• Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args
or **kwargs, their casting behavior in mixed precision should be handled manually.

• The SavedModel input specification is generated using inputs only.

• Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported
for inputs and not for tensors in positional and keyword arguments.

*args: Additional positional arguments. May contain tensors, although this is not recom-
mended, for the reasons above.

**kwargs: Additional keyword arguments. May contain tensors, although this is not recom-
mended, for the reasons above. The following optional keyword arguments are reserved: - train-
ing: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

• mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value
will be set to the mask generated for inputs by the previous layer (if input did come from a layer
that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

2.8. DeepCTR Layers API 147

DeepCTR Documentation, Release 0.9.3

Returns: A tensor or list/tuple of tensors.

compute_mask(inputs, mask)
Computes an output mask tensor.

Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape(input_shape)
Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will
later be used with inputs that match the input shape provided here.

Args:

input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the
layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns: An input shape tuple.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns: Python dictionary.

148 Chapter 2. DisscussionGroup

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

149

DeepCTR Documentation, Release 0.9.3

150 Chapter 3. Indices and tables

Python Module Index

d
deepctr.estimator.models.afm, 91
deepctr.estimator.models.autoint, 94
deepctr.estimator.models.ccpm, 85
deepctr.estimator.models.dcn, 92
deepctr.estimator.models.deepfm, 89
deepctr.estimator.models.fibinet, 95
deepctr.estimator.models.fnn, 86
deepctr.estimator.models.nfm, 90
deepctr.estimator.models.pnn, 87
deepctr.estimator.models.wdl, 88
deepctr.estimator.models.xdeepfm, 93
deepctr.layers.activation, 130
deepctr.layers.core, 96
deepctr.layers.interaction, 103
deepctr.layers.normalization, 132
deepctr.layers.sequence, 134
deepctr.models.afm, 68
deepctr.models.autoint, 74
deepctr.models.ccpm, 63
deepctr.models.dcn, 69
deepctr.models.dcnmix, 69
deepctr.models.deepfefm, 79
deepctr.models.deepfm, 66
deepctr.models.difm, 79
deepctr.models.edcn, 84
deepctr.models.fgcnn, 76
deepctr.models.fibinet, 77
deepctr.models.flen, 77
deepctr.models.fnn, 64
deepctr.models.ifm, 78
deepctr.models.mlr, 67
deepctr.models.multitask.esmm, 81
deepctr.models.multitask.mmoe, 82
deepctr.models.multitask.ple, 83
deepctr.models.multitask.sharedbottom,

80
deepctr.models.nfm, 67
deepctr.models.onn, 75

deepctr.models.pnn, 65
deepctr.models.sequence.bst, 73
deepctr.models.sequence.dien, 71
deepctr.models.sequence.din, 70
deepctr.models.sequence.dsin, 72
deepctr.models.wdl, 65
deepctr.models.xdeepfm, 73

151

DeepCTR Documentation, Release 0.9.3

152 Python Module Index

Index

A
AFM() (in module deepctr.models.afm), 68
AFMEstimator() (in module

deepctr.estimator.models.afm), 91
AFMLayer (class in deepctr.layers.interaction), 103
AttentionSequencePoolingLayer (class in

deepctr.layers.sequence), 134
AutoInt() (in module deepctr.models.autoint), 74
AutoIntEstimator() (in module

deepctr.estimator.models.autoint), 94

B
BiasEncoding (class in deepctr.layers.sequence), 137
BiInteractionPooling (class in

deepctr.layers.interaction), 105
BilinearInteraction (class in

deepctr.layers.interaction), 107
BiLSTM (class in deepctr.layers.sequence), 136
BridgeModule (class in deepctr.layers.interaction),

108
BST() (in module deepctr.models.sequence.bst), 73
build() (deepctr.layers.activation.Dice method), 131
build() (deepctr.layers.core.DNN method), 97
build() (deepctr.layers.core.LocalActivationUnit

method), 99
build() (deepctr.layers.core.PredictionLayer method),

100
build() (deepctr.layers.core.RegulationModule

method), 102
build() (deepctr.layers.interaction.AFMLayer

method), 104
build() (deepctr.layers.interaction.BiInteractionPooling

method), 105
build() (deepctr.layers.interaction.BilinearInteraction

method), 107
build() (deepctr.layers.interaction.BridgeModule

method), 109
build() (deepctr.layers.interaction.CIN method), 110
build() (deepctr.layers.interaction.CrossNet method),

112
build() (deepctr.layers.interaction.CrossNetMix

method), 114
build() (deepctr.layers.interaction.FEFMLayer

method), 116
build() (deepctr.layers.interaction.FGCNNLayer

method), 117
build() (deepctr.layers.interaction.FieldWiseBiInteraction

method), 120
build() (deepctr.layers.interaction.FM method), 119
build() (deepctr.layers.interaction.FwFMLayer

method), 122
build() (deepctr.layers.interaction.InnerProductLayer

method), 124
build() (deepctr.layers.interaction.InteractingLayer

method), 125
build() (deepctr.layers.interaction.OutterProductLayer

method), 127
build() (deepctr.layers.interaction.SENETLayer

method), 129
build() (deepctr.layers.normalization.LayerNormalization

method), 132
build() (deepctr.layers.sequence.AttentionSequencePoolingLayer

method), 134
build() (deepctr.layers.sequence.BiasEncoding

method), 137
build() (deepctr.layers.sequence.BiLSTM method),

136
build() (deepctr.layers.sequence.DynamicGRU

method), 138
build() (deepctr.layers.sequence.KMaxPooling

method), 139
build() (deepctr.layers.sequence.PositionEncoding

method), 141
build() (deepctr.layers.sequence.SequencePoolingLayer

method), 142
build() (deepctr.layers.sequence.Transformer

method), 145
build() (deepctr.layers.sequence.WeightedSequenceLayer

method), 147

153

DeepCTR Documentation, Release 0.9.3

C
call() (deepctr.layers.activation.Dice method), 131
call() (deepctr.layers.core.DNN method), 97
call() (deepctr.layers.core.LocalActivationUnit

method), 99
call() (deepctr.layers.core.PredictionLayer method),

100
call() (deepctr.layers.core.RegulationModule

method), 102
call() (deepctr.layers.interaction.AFMLayer method),

104
call() (deepctr.layers.interaction.BiInteractionPooling

method), 106
call() (deepctr.layers.interaction.BilinearInteraction

method), 107
call() (deepctr.layers.interaction.BridgeModule

method), 109
call() (deepctr.layers.interaction.CIN method), 111
call() (deepctr.layers.interaction.CrossNet method),

112
call() (deepctr.layers.interaction.CrossNetMix

method), 114
call() (deepctr.layers.interaction.FEFMLayer

method), 116
call() (deepctr.layers.interaction.FGCNNLayer

method), 117
call() (deepctr.layers.interaction.FieldWiseBiInteraction

method), 120
call() (deepctr.layers.interaction.FM method), 119
call() (deepctr.layers.interaction.FwFMLayer

method), 122
call() (deepctr.layers.interaction.InnerProductLayer

method), 124
call() (deepctr.layers.interaction.InteractingLayer

method), 126
call() (deepctr.layers.interaction.OutterProductLayer

method), 127
call() (deepctr.layers.interaction.SENETLayer

method), 129
call() (deepctr.layers.normalization.LayerNormalization

method), 132
call() (deepctr.layers.sequence.AttentionSequencePoolingLayer

method), 134
call() (deepctr.layers.sequence.BiasEncoding

method), 138
call() (deepctr.layers.sequence.BiLSTM method), 136
call() (deepctr.layers.sequence.DynamicGRU

method), 139
call() (deepctr.layers.sequence.KMaxPooling

method), 139
call() (deepctr.layers.sequence.PositionEncoding

method), 141
call() (deepctr.layers.sequence.SequencePoolingLayer

method), 143

call() (deepctr.layers.sequence.Transformer method),
145

call() (deepctr.layers.sequence.WeightedSequenceLayer
method), 147

CCPM() (in module deepctr.models.ccpm), 63
CCPMEstimator() (in module

deepctr.estimator.models.ccpm), 85
CIN (class in deepctr.layers.interaction), 110
compute_mask() (deepctr.layers.core.LocalActivationUnit

method), 100
compute_mask() (deepctr.layers.interaction.SENETLayer

method), 130
compute_mask() (deepctr.layers.sequence.AttentionSequencePoolingLayer

method), 135
compute_mask() (deepctr.layers.sequence.BiasEncoding

method), 138
compute_mask() (deepctr.layers.sequence.BiLSTM

method), 137
compute_mask() (deepctr.layers.sequence.PositionEncoding

method), 142
compute_mask() (deepctr.layers.sequence.SequencePoolingLayer

method), 143
compute_mask() (deepctr.layers.sequence.Transformer

method), 146
compute_mask() (deepctr.layers.sequence.WeightedSequenceLayer

method), 148
compute_output_shape()

(deepctr.layers.activation.Dice method),
132

compute_output_shape()
(deepctr.layers.core.DNN method), 98

compute_output_shape()
(deepctr.layers.core.LocalActivationUnit
method), 100

compute_output_shape()
(deepctr.layers.core.PredictionLayer method),
101

compute_output_shape()
(deepctr.layers.core.RegulationModule
method), 103

compute_output_shape()
(deepctr.layers.interaction.AFMLayer method),
105

compute_output_shape()
(deepctr.layers.interaction.BiInteractionPooling
method), 106

compute_output_shape()
(deepctr.layers.interaction.BilinearInteraction
method), 108

compute_output_shape()
(deepctr.layers.interaction.BridgeModule
method), 110

compute_output_shape()
(deepctr.layers.interaction.CIN method),

154 Index

DeepCTR Documentation, Release 0.9.3

111
compute_output_shape()

(deepctr.layers.interaction.CrossNet method),
113

compute_output_shape()
(deepctr.layers.interaction.CrossNetMix
method), 115

compute_output_shape()
(deepctr.layers.interaction.FEFMLayer
method), 117

compute_output_shape()
(deepctr.layers.interaction.FGCNNLayer
method), 118

compute_output_shape()
(deepctr.layers.interaction.FieldWiseBiInteraction
method), 121

compute_output_shape()
(deepctr.layers.interaction.FM method),
120

compute_output_shape()
(deepctr.layers.interaction.FwFMLayer
method), 123

compute_output_shape()
(deepctr.layers.interaction.InnerProductLayer
method), 124

compute_output_shape()
(deepctr.layers.interaction.InteractingLayer
method), 126

compute_output_shape()
(deepctr.layers.interaction.OutterProductLayer
method), 128

compute_output_shape()
(deepctr.layers.interaction.SENETLayer
method), 130

compute_output_shape()
(deepctr.layers.normalization.LayerNormalization
method), 133

compute_output_shape()
(deepctr.layers.sequence.AttentionSequencePoolingLayer
method), 135

compute_output_shape()
(deepctr.layers.sequence.BiasEncoding
method), 138

compute_output_shape()
(deepctr.layers.sequence.BiLSTM method),
137

compute_output_shape()
(deepctr.layers.sequence.DynamicGRU
method), 139

compute_output_shape()
(deepctr.layers.sequence.KMaxPooling
method), 140

compute_output_shape()
(deepctr.layers.sequence.PositionEncoding

method), 142
compute_output_shape()

(deepctr.layers.sequence.SequencePoolingLayer
method), 144

compute_output_shape()
(deepctr.layers.sequence.Transformer method),
146

compute_output_shape()
(deepctr.layers.sequence.WeightedSequenceLayer
method), 148

CrossNet (class in deepctr.layers.interaction), 112
CrossNetMix (class in deepctr.layers.interaction), 113

D
DCN() (in module deepctr.models.dcn), 69
DCNEstimator() (in module

deepctr.estimator.models.dcn), 92
DCNMix() (in module deepctr.models.dcnmix), 70
deepctr.estimator.models.afm (module), 91
deepctr.estimator.models.autoint (mod-

ule), 94
deepctr.estimator.models.ccpm (module), 85
deepctr.estimator.models.dcn (module), 92
deepctr.estimator.models.deepfm (module),

89
deepctr.estimator.models.fibinet (mod-

ule), 95
deepctr.estimator.models.fnn (module), 86
deepctr.estimator.models.nfm (module), 90
deepctr.estimator.models.pnn (module), 87
deepctr.estimator.models.wdl (module), 88
deepctr.estimator.models.xdeepfm (mod-

ule), 93
deepctr.layers.activation (module), 130
deepctr.layers.core (module), 96
deepctr.layers.interaction (module), 103
deepctr.layers.normalization (module), 132
deepctr.layers.sequence (module), 134
deepctr.models.afm (module), 68
deepctr.models.autoint (module), 74
deepctr.models.ccpm (module), 63
deepctr.models.dcn (module), 69
deepctr.models.dcnmix (module), 69
deepctr.models.deepfefm (module), 79
deepctr.models.deepfm (module), 66
deepctr.models.difm (module), 79
deepctr.models.edcn (module), 84
deepctr.models.fgcnn (module), 76
deepctr.models.fibinet (module), 77
deepctr.models.flen (module), 77
deepctr.models.fnn (module), 64
deepctr.models.ifm (module), 78
deepctr.models.mlr (module), 67
deepctr.models.multitask.esmm (module), 81

Index 155

DeepCTR Documentation, Release 0.9.3

deepctr.models.multitask.mmoe (module), 82
deepctr.models.multitask.ple (module), 83
deepctr.models.multitask.sharedbottom

(module), 80
deepctr.models.nfm (module), 67
deepctr.models.onn (module), 75
deepctr.models.pnn (module), 65
deepctr.models.sequence.bst (module), 73
deepctr.models.sequence.dien (module), 71
deepctr.models.sequence.din (module), 70
deepctr.models.sequence.dsin (module), 72
deepctr.models.wdl (module), 65
deepctr.models.xdeepfm (module), 73
DeepFEFM() (in module deepctr.models.deepfefm), 79
DeepFM() (in module deepctr.models.deepfm), 66
DeepFMEstimator() (in module

deepctr.estimator.models.deepfm), 89
Dice (class in deepctr.layers.activation), 130
DIEN() (in module deepctr.models.sequence.dien), 71
DIFM() (in module deepctr.models.difm), 79
DIN() (in module deepctr.models.sequence.din), 70
DNN (class in deepctr.layers.core), 96
DSIN() (in module deepctr.models.sequence.dsin), 72
DynamicGRU (class in deepctr.layers.sequence), 138

E
EDCN() (in module deepctr.models.edcn), 84
ESMM() (in module deepctr.models.multitask.esmm), 81

F
FEFMLayer (class in deepctr.layers.interaction), 115
FGCNN() (in module deepctr.models.fgcnn), 76
FGCNNLayer (class in deepctr.layers.interaction), 117
FiBiNET() (in module deepctr.models.fibinet), 77
FiBiNETEstimator() (in module

deepctr.estimator.models.fibinet), 95
FieldWiseBiInteraction (class in

deepctr.layers.interaction), 120
FLEN() (in module deepctr.models.flen), 77
FM (class in deepctr.layers.interaction), 119
FNN() (in module deepctr.models.fnn), 64
FNNEstimator() (in module

deepctr.estimator.models.fnn), 86
FwFMLayer (class in deepctr.layers.interaction), 122

G
get_config() (deepctr.layers.activation.Dice

method), 132
get_config() (deepctr.layers.core.DNN method), 98
get_config() (deepctr.layers.core.LocalActivationUnit

method), 100
get_config() (deepctr.layers.core.PredictionLayer

method), 101

get_config() (deepctr.layers.core.RegulationModule
method), 103

get_config() (deepctr.layers.interaction.AFMLayer
method), 105

get_config() (deepctr.layers.interaction.BilinearInteraction
method), 108

get_config() (deepctr.layers.interaction.BridgeModule
method), 110

get_config() (deepctr.layers.interaction.CIN
method), 111

get_config() (deepctr.layers.interaction.CrossNet
method), 113

get_config() (deepctr.layers.interaction.CrossNetMix
method), 115

get_config() (deepctr.layers.interaction.FEFMLayer
method), 117

get_config() (deepctr.layers.interaction.FGCNNLayer
method), 118

get_config() (deepctr.layers.interaction.FieldWiseBiInteraction
method), 121

get_config() (deepctr.layers.interaction.FwFMLayer
method), 123

get_config() (deepctr.layers.interaction.InnerProductLayer
method), 125

get_config() (deepctr.layers.interaction.InteractingLayer
method), 126

get_config() (deepctr.layers.interaction.OutterProductLayer
method), 128

get_config() (deepctr.layers.interaction.SENETLayer
method), 130

get_config() (deepctr.layers.normalization.LayerNormalization
method), 133

get_config() (deepctr.layers.sequence.AttentionSequencePoolingLayer
method), 135

get_config() (deepctr.layers.sequence.BiasEncoding
method), 138

get_config() (deepctr.layers.sequence.BiLSTM
method), 137

get_config() (deepctr.layers.sequence.DynamicGRU
method), 139

get_config() (deepctr.layers.sequence.KMaxPooling
method), 140

get_config() (deepctr.layers.sequence.PositionEncoding
method), 142

get_config() (deepctr.layers.sequence.SequencePoolingLayer
method), 144

get_config() (deepctr.layers.sequence.Transformer
method), 146

get_config() (deepctr.layers.sequence.WeightedSequenceLayer
method), 148

I
IFM() (in module deepctr.models.ifm), 78

156 Index

DeepCTR Documentation, Release 0.9.3

InnerProductLayer (class in
deepctr.layers.interaction), 123

InteractingLayer (class in
deepctr.layers.interaction), 125

K
KMaxPooling (class in deepctr.layers.sequence), 139

L
LayerNormalization (class in

deepctr.layers.normalization), 132
LocalActivationUnit (class in

deepctr.layers.core), 98

M
MLR() (in module deepctr.models.mlr), 67
MMOE() (in module deepctr.models.multitask.mmoe), 82

N
NFM() (in module deepctr.models.nfm), 67
NFMEstimator() (in module

deepctr.estimator.models.nfm), 90

O
ONN() (in module deepctr.models.onn), 75
OutterProductLayer (class in

deepctr.layers.interaction), 127

P
PLE() (in module deepctr.models.multitask.ple), 83
PNN() (in module deepctr.models.pnn), 65
PNNEstimator() (in module

deepctr.estimator.models.pnn), 87
PositionEncoding (class in

deepctr.layers.sequence), 141
PredictionLayer (class in deepctr.layers.core), 100

R
RegulationModule (class in deepctr.layers.core),

102

S
SENETLayer (class in deepctr.layers.interaction), 128
SequencePoolingLayer (class in

deepctr.layers.sequence), 142
SharedBottom() (in module

deepctr.models.multitask.sharedbottom),
80

T
Transformer (class in deepctr.layers.sequence), 144

W
WDL() (in module deepctr.models.wdl), 65
WDLEstimator() (in module

deepctr.estimator.models.wdl), 88
WeightedSequenceLayer (class in

deepctr.layers.sequence), 146

X
xDeepFM() (in module deepctr.models.xdeepfm), 74
xDeepFMEstimator() (in module

deepctr.estimator.models.xdeepfm), 93

Index 157

	News
	DisscussionGroup
	Quick-Start
	Features
	Examples
	FAQ
	History
	DeepCTR Models API
	DeepCTR Estimators API
	DeepCTR Layers API

	Indices and tables
	Python Module Index
	Index

